لا يفترض في معاملات المعادلة من الدرجة الثالثة أن تكون أعدادا مركبة. كل ما يلي يبقى صحيحا عندما تنتمي المعاملات إلى حقل ما محدده يساوي الصفر أي يتجاوز الثلاثة. جذور المعادلات من الدرجة الثالثة لا تنتمي حتما إلى نفس الحقل الذي تنتمي إليه معاملات هذه المعادلة. على سبيل المثال، قد يتم ايجاد معادلة من الدرجة الثالثة معاملاتها أعداد جذرية وجذورها ليست جذرية وليست حتى حقيقية بل هن جذور مركبة.
النقط الحرجة لدالة هن تلك القيم ل x حيث يكون انحناء الدالة مساويا للصفر. النقط الحرجة لدالة تكعيبية معرفة كما يلي f(x) = ax3 + bx2 + cx + d من النقط اللائي يحققن المعادلة التالية:
الحلحلة العامة لدالة تكعيبية معاملاتها أعداد حقيقية
لتكن دالة قيمتها معروفة عند نقطتين اثنتين مختلفتين كما هو معروف أيضا قيمة اشتقاق هذه الدالة عند هاتين النقطتين. هناك دالة تكعيبية وحيدة تحقق هذه الشروط الأربعة. وتسمى بمنحنى هيرميت التكعيبي، نسبة إلى عالم الرياضيات الفرنسي شارل هيرمت.