奥恩斯坦-乌伦贝克过程
在数学中,奥恩斯坦-乌伦贝克过程(Ornstein-Uhlenbeck process,简称OU过程)是一个随机过程,在金融数学和物理学中有很多的引用。OU过程描述一个经历摩擦的布朗粒子(damped random walk)。[1]
这个过程以奥恩斯坦(Leonard Ornstein)和乔治·乌伦贝克的名字命名。
这是一个自迴歸模型AR(1)。
定义
OU过程有下面的随机微分方程
其中的 , 是参数,并且 是维纳过程。[2][3][4]
是常值。上面的方程是Vasicek模型。[5]
福克–普朗克方程
OU过程的福克–普朗克方程是[6]
。这是一个抛物偏微分方程。方程的解是
相关
参考文献
- ^ MacLeod, C. L.; Ivezić, Ž; Kochanek, C. S.; Kozłowski, S.; Kelly, B.; Bullock, E.; Kimball, A.; Sesar, B.; Westman, D. Modeling the Time Variability of SDSS Stripe 82 Quasars as a Damped Random Walk. The Astrophysical Journal. October 2010, 721: 1014. doi:10.1088/0004-637X/721/2/1014 (英语). [永久失效連結]
- ^ Karatzas, Ioannis; Shreve, Steven E., Brownian Motion and Stochastic Calculus 2nd, Springer-Verlag: 358, 1991, ISBN 978-0-387-97655-6
- ^ Gard, Thomas C., Introduction to Stochastic Differential Equations, Marcel Dekker: 115, 1988, ISBN 978-0-8247-7776-0
- ^ Gardiner, C.W., Handbook of Stochastic Methods 2nd, Springer-Verlag: 106, 1985, ISBN 978-0-387-15607-1
- ^ Björk, Tomas. Arbitrage Theory in Continuous Time 3rd. Oxford University Press. 2009: 375, 381. ISBN 978-0-19-957474-2.
- ^ Risken, H., The Fokker-Planck Equation: Methods of Solution and Application, Springer-Verlag: 99–100, 1984, ISBN 978-0-387-13098-9
- ^ Chan et al. (1992)
阅读
- Bibbona, E.; Panfilo, G.; Tavella, P. The Ornstein-Uhlenbeck process as a model of a low pass filtered white noise. Metrologia. 2008, 45 (6): S117–S126. Bibcode:2008Metro..45S.117B. doi:10.1088/0026-1394/45/6/S17.
- Chan, K. C.; Karolyi, G. A.; Longstaff, F. A.; Sanders, A. B. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance. 1992, 47 (3): 1209–1227. doi:10.1111/j.1540-6261.1992.tb04011.x.
- Doob, J.L. The Brownian Movement and Stochastic Equations. Annals of Mathematics. April 1942, 43 (2): 351–369. JSTOR 1968873. doi:10.2307/1968873.
- Gillespie, D. T. Exact numerical simulation of the Ornstein–Uhlenbeck process and its integral (PDF). Phys. Rev. E. 1996, 54 (2): 2084–2091 [2020-02-11]. Bibcode:1996PhRvE..54.2084G. PMID 9965289. doi:10.1103/PhysRevE.54.2084. (原始内容 (PDF)存档于2022-03-01).
- Leung, Tim; Li, Xin. Optimal Mean Reversion Trading with Transaction Costs and Stop-Loss Exit. International Journal of Theoretical & Applied Finance. 2015, 18 (3): 1550020. arXiv:1411.5062 . doi:10.1142/S021902491550020X.
- Risken, H. The Fokker–Planck Equation: Method of Solution and Applications. New York: Springer-Verlag. 1989. ISBN 978-0387504988.
- Uhlenbeck, G. E.; Ornstein, L. S. On the theory of Brownian Motion. Phys. Rev. 1930, 36 (5): 823–841. Bibcode:1930PhRv...36..823U. doi:10.1103/PhysRev.36.823.
- Martins, E.P. Estimating the Rate of Phenotypic Evolution from Comparative Data. Amer. Nat. 1994, 144 (2): 193–209.
外部链接
|
|