魔群

群论


魔群(英語:Monster group)或怪獸群,或友善巨人(the Friendly Giant)或費雪─格里斯怪獸(Fischer-Griess Monster),是一個有限單群,是26個散在群的其中之一,一般常將之記作MF1

怪獸群的是26個散在群中最大的,其階為

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
= 808017424794512875886459904961710757005754368000000000
8 · 1053

有限單群的分類已完成(見有限單群分類一文)。每個有限單群都屬於當中有的18類可數無限族中,或不包含於那些可系統化模式的18類可數無限族中,那26個的「散單群」中。而怪獸群是那26個散單群中階數最大的群。而二十六個散單群除了六個,其餘的散單群均是怪獸群的子集合。羅伯特‧格里斯(Robert Griess)將那六個不為魔群子集的群稱為「低群」(pariahs),並以「快樂大家族」(the happy family)一詞稱呼其他的散單群。

或許對怪獸群最好的定義方式,就是將之定義為同時包含康威群(Conway group)和費歇爾群英语Fischer group的有限單群中階最小者(怪獸群雖為散在群中階最大的,但這不表示它是所有有限單群中階最大的,其他類的有限單群中有階比其更大者存在)。

存在性與唯一性

怪獸群的存在性最早在1973年為貝恩德‧費雪(Bernd Fischer,他未出版相關想法)與羅伯特‧格里斯所預測,他們當時認為存在一個單群,該單群包含子怪獸群中做為某個對合中心化子的某個雙覆蓋。數月後,M的階被格里斯以湯普森階公式(Thompson order formula)計算出,而費雪(Fischer)、康威(Conway)、諾頓(Norton)與湯普森(Thompson)等人則發現此群包含了其他的群做為其子商,被包含的群包括了許多已知的散單群,此外他們還發現了兩個新的單群:湯普森群原田-諾頓群。格里斯將怪獸群建構為格里斯代數(一個196884維的交換非結合代數)的自同構群約翰‧康威(John Horton Conway)和雅魁‧提次(Jacques Tits)隨後簡化了其建構。

格里斯的建構證明了怪獸群的存在。約翰‧湯普森(John G. Thompson)則說明了其做為階為此數的單群的唯一性可由一個196883維忠實表示法的存在得出。該表示法的存在性在1982年為西蒙‧諾頓(Simon P. Norton)提出,然而他從未發表此證明的細節。第一個關於怪獸群唯一性的證明則由格里斯、麥爾法蘭肯菲爾德(Meierfrankenfeld)和塞格夫(Segev)給出。

月光猜想

怪獸群是康威(Conway)和諾頓(Norton)所提出的怪兽月光理论的兩個主要成份之一。此猜想與離散和非離散數學相關,並在1992年為理查‧伯切德斯(Richard Borcherds)所證明。

在此設定下,怪獸群可由怪獸群模組的自同構群示現:亦即由一作用在怪獸李代數上,屬廣義Kac–Moody代數,且包含Griess代數的無窮維代數的頂點算子代數示現而出。


表示與維度

  一個忠實的複數表示的最小度數是196,883,它是怪獸群階數可分得3個因子乘積的分割。當中怪獸群的最小忠實排列表示是 24 · 37 · 53 · 74 · 11 · 132 · 29 · 41 · 59 · 71 (約 1020)點。他可被視為有理數上的一個伽罗瓦群(Thompson 1984,p. 443)而實現,並視為一個胡爾維茲群(Hurwitz group)(Wilson 2004)

  怪獸群在單群中並不平常,因並沒有已知的簡單規則或方法可表示他的元素,而這並非起因於他大小的表示因素。例如,單群"A"100和SL20(2)相對是大,但容易計算,因為它們是具已知的置換或線性表示;交錯群具有與之的大小相較下的置換表示,且所有有限單李型式群有線性表示。除了怪物群之外的所有散單群體也具有足夠小的線性表示,以至於它們易於在計算機上工作(而難度僅次於怪物群的,為可分割成維度4370的小怪獸群(baby Monster)表示)。

麥凱的E8觀察

怪獸群和擴張登金圖(Dynkin diagram)亦存在著關係,其關聯在圖結點與怪獸群同餘類之間表現得更明顯,此關聯又被稱作「麥凱的E8觀察」(McKay's E8 observation)[1][2]

子群結構

Sporadic Finite Groups Showing (Sporadic) Subgroups

怪獸群包含了至少44個共軛類極大子群。六十數種同構類型的非交換單群,亦包含在怪獸群中,做為怪獸群的子群或子群的商群。

怪獸群的子群包括了26個散在群中的多數,但非全部的散在群都是它的子群。一旁所示之圖是基於馬克‧羅南(Mark Ronan)所撰的書《Symmetry and the Monster》的,表明這些散在單群是如何與彼此產生關係的。線段表示下方的群被其上的群所包含,並為其上的群的子商。圈起來的符號,表示該符號所代表的群不被包含於其他更大的散在單群中。為了清楚表明,多餘的包含關係在此圖中未表示。


  • 2.B   對合(involution)的中心化子(Centralizer);包含一Sylow 47-子群的正規化子(normalizer) (47:23) × 2 。
  • 21+24.Co1   對合的中心化子。
  • 3.Fi24  階數3子群的正規化子;包含一Sylow 29-子群的正規化子((29:14) × 3).2。
  • 22.2E6(22):S3   一Klein 4-群的正規化子。
  • 210+16.O10+(2)
  • 22+11+22.(M24 × S3)   一Klein 4-群的正規化子; 含一Sylow 23-子群的正規化子(23:11) × S4
  • 31+12.2Suz.2   階數3子群的正規化子。
  • 25+10+20.(S3 × L5(2))
  • S3 × Th   階數3子群的正規化子;含一Sylow 31-子群的正規化子(31:15) × S3
  • 23+6+12+18.(L3(2) × 3S6)
  • 38.O8(3).23
  • (D10 × HN).2   階數5子群的正規化子。
  • (32:2 × O8+(3)).S4
  • 32+5+10.(M11 × 2S4)
  • 33+2+6+6:(L3(3) × SD16)
  • 51+6:2J2:4   階數5子群的正規化子。
  • (7:3 × He):2   階數7子群的正規化子。
  • (A5 × A12):2
  • 53+3.(2 × L3(5))
  • (A6 × A6 × A6).(2 × S4)
  • (A5 × U3(8):31):2   含一Sylow 19-子群的正規化子((19:9) × A5):2 。
  • 52+2+4:(S3 × GL2(5))
  • (L3(2) × S4(4):2).2   含一Sylow 17-子群的正規化子 ((17:8) × L3(2)).2 。
  • 71+4:(3 × 2S7)   階數7子群的正規化子。
  • (52:4.22 × U3(5)).S3
  • (L2(11) × M12):2   包含階數11子群的正規化子(11:5 × M12):2 。
  • (A7 × (A5 × A5):22):2
  • 54:(3 × 2L2(25)):22
  • 72+1+2:GL2(7)
  • M11 × A6.22
  • (S5 × S5 × S5):S3
  • (L2(11) × L2(11)):4
  • 132:2L2(13).4
  • (72:(3 × 2A4) × L2(7)):2
  • (13:6 × L3(3)).2   階數13子群的正規化子。
  • 131+2:(3 × 4S4)   階數13子群的正規化子; 一Sylow 13-子群的正規化子。
  • L2(71)   Holmes & Wilson (2008) 含一Sylow 71-子群的正規化子71:35。
  • L2(59)   Holmes & Wilson (2004) 含一Sylow 59-子群的正規化子59:29。
  • 112:(5 × 2A5)   Sylow 11-子群的正規化子。
  • L2(41)   Norton & Wilson (2013) 找到此形式的極大子群; 此是由於Zavarnitsine指出一些先前的沒有這樣的極大子群存在。
  • L2(29):2   Holmes & Wilson (2002)
  • 72:SL2(7)  一些過去7-局部子群的表中此被意外地忽略了。
  • L2(19):2   Holmes & Wilson (2008)
  • 41:40   一Sylow 41-子群的正規化子。

相關條目

腳註

  1. ^ Arithmetic groups and the affine E8 Dynkin diagram Archive.is存檔,存档日期2012-07-13, by John F. Duncan, in Groups and symmetries: from Neolithic Scots to John McKay
  2. ^ le Bruyn, Lieven, the monster graph and McKay’s observation, 22 April 2009, (原始内容存档于2010-08-14) 

參照

外部連結

Read other articles:

Batus Batus barbicornis Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Batus(Thunberg, 1822) Batus adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang telah ditebang....

 

 

Akademi Angkatan Laut⚓️Dibentuk10 Oktober 1951NegaraIndonesiaCabangTentara Nasional IndonesiaTipe unitKomando PendidikanBagian dariTNI Angkatan LautMarkasSurabaya, Jawa TimurMotoहरी धर्म शांति Hree Dharma Shanti (Bahasa Sanskerta)Situs webwww.aal.ac.idTokohGubernurLaksamana Muda TNI Supardi, S.E., M.B.A., CHRMP.Wakil GubernurLaksamana Pertama TNI Arif Badrudin, M.Mgt.Stud.SeklemLaksamana Pertama TNI Ir. Weningingtyas Alindri, M.A.P.Danmen AALKolonel Laut (P) Dr. Ar...

 

 

Roman historian and theologian (c. 375/385 – c. 420 AD) For other uses, see Orosius (disambiguation). OrosiusMiniature from the Saint-Epure codexBornc. 375/85 ADBraga, GallaeciaDiedc. 420 ADOccupation(s)Theologian and historianAcademic backgroundInfluences Augustine of Hippo Livy Jerome Junianus Justinus Tacitus Suetonius Florus Academic workMain interests Providentialism Universal history Germanic paganism Paulus Orosius (/ˈpɔːləs əˈroʊʒəs/; born c. 375/385 – c. 420 AD),[1&#...

Breach of the rights conferred by a patent Patent law Overviews Patent Patent claim History Economics Criticism Procedural concepts Application Prosecution Opposition Valuation Licensing Infringement Patentability requirements and related concepts Patentable subject matter Inventorship Novelty Inventive step and non-obviousness Industrial applicability Utility Person skilled in the art Prior art Other legal requirements Sufficiency of disclosure Unity of invention By region / country...

 

 

Norwegian (atau National) Advanced Surface-to-Air Missile System Nampak radar, peluncur, dan rudal dari sistem NASAMS Jenis Sistem rudal darat ke udara Negara asal Amerika Serikat/Norwegia Sejarah pemakaian Masa penggunaan 1997–sekarang Digunakan oleh Simak Pengguna Pada perang Perang Rusia-Ukraina Sejarah produksi Perancang Kongsberg Defence & Aerospace Produsen Kongsberg Defence & Aerospace dan Raytheon Missiles & Defense Spesifikasi Awak 2 Jarak efek...

 

 

Jacob Ramsey Ramsey bermain untuk Aston Villa pada 2021Informasi pribadiNama lengkap Jacob Matthew Ramsey[1]Tanggal lahir 28 Mei 2001 (umur 22)[2]Tempat lahir Birmingham, InggrisTinggi 180 cm (5 ft 11 in)[3]Posisi bermain GelandangInformasi klubKlub saat ini Aston VillaNomor 41Karier junior2007–2019 Aston VillaKarier senior*Tahun Tim Tampil (Gol)2019– Aston Villa 92 (12)2020 → Doncaster Rovers (pinjaman) 7 (3)Tim nasional‡2019 Inggris U18 7...

American college basketball season 2001–02 Illinois Fighting Illini men's basketballBig Ten Regular Season co-championsLas Vegas Invitational, ChampionNCAA tournament, Sweet SixteenConferenceBig Ten ConferenceRankingCoachesNo. 11APNo. 13Record26–9 (11–5 Big Ten)Head coachBill Self (2nd season)Assistant coaches Billy Gillispie Wayne McClain Norm Roberts MVPFrank WilliamsCaptainCory BradfordFrank WilliamsHome arenaAssembly HallSeasons← 2000–012002–03...

 

 

Most prominent locations of the continent's physical boundaries North America This is a list of the extreme points of North America: the points that are highest and lowest, and farther north, south, east or west than any other location on the continent. Some of these points are debatable, given the varying definitions of North America. North America and surrounding islands Northernmost point — Kaffeklubben Island, Greenland 83°40′N 29°50′W / 83.667°N 29.833°W...

 

 

New Zealand swimmer Hayley PalmerPersonal informationFull nameHayley Gloria PalmerNationality New ZealandBorn (1989-05-08) 8 May 1989 (age 34)Height1.71 m (5 ft 7 in)Weight72 kg (159 lb)SportSportSwimmingStrokesFreestyleClubNorth Shore Swimming Club (2007-present) Medal record Commonwealth Games 2010 Delhi 50 m freestyle 2010 Delhi 4x100 m freestyle Hayley Gloria Palmer (born 8 May 1989 in Cheltenham) is an Olympian and National Record holding swimmer f...

Protected area in Suffolk, England Crag Farm Pit, SudbourneSite of Special Scientific InterestLocationSuffolkGrid referenceTM 428 523[1]InterestGeologicalArea4.8 hectares[1]Notification1985[1]Location mapMagic Map Crag Farm Pit, Sudbourne is a 4.8-hectare (12-acre) geological Site of Special Scientific Interest east of Sudbourne in Suffolk.[1][2] It is a Geological Conservation Review site,[3] and within the Suffolk Coast and Heaths Area of Outs...

 

 

American library association 2022 ALSC President's Program with President Lucia M. GonzalezThe Association for Library Service to Children (ALSC) is a division of the American Library Association. ALSC has over 4,000 members, including children, experts in children's literature, publishers, faculty members, and other adults. The Association has nearly 60 active committees and task forces, including programs for youth, publishing resources and journals, evaluating and awarding media for childr...

 

 

Aubignascomune Aubignas – Veduta LocalizzazioneStato Francia RegioneAlvernia-Rodano-Alpi Dipartimento Ardèche ArrondissementPrivas CantoneLe Teil TerritorioCoordinate44°35′N 4°37′E / 44.583333°N 4.616667°E44.583333; 4.616667 (Aubignas)Coordinate: 44°35′N 4°37′E / 44.583333°N 4.616667°E44.583333; 4.616667 (Aubignas) Superficie15,4 km² Abitanti412[1] (2009) Densità26,75 ab./km² Altre informazioniCod. postale07400 F...

1940 film The Pirate's DreamItalian theatrical release posterDirected byMario MattoliWritten byMario MattoliVittorio MetzStenoProduced byLiborio CapitaniStarringErminio MacarioCinematographyAldo TontiEdited byMario SerandreiRelease date 20 October 1940 (1940-10-20) Running time75 minutesCountryItalyLanguageItalian The Pirate's Dream (Italian: Il pirata sono io!) is a 1940 Italian film directed by Mario Mattoli and starring Erminio Macario.[1] Plot The setting is Santa C...

 

 

River in Morocco Bou RegregValley of the Bou Regreg near Rabat, MoroccoCourse of the Bou Regreg [2]LocationCountryMoroccoPhysical characteristicsMouth  • locationAtlantic OceanLength240 km (150 mi) The Bou Regreg (Arabic: أبو رقراق) is a river located in western Morocco which discharges into the Atlantic Ocean between the cities of Rabat and Salé. The estuary of this river is termed Wadi Sala.[1] The river is 240 kilometres long, with a tid...

 

 

Chinese company Jointown Pharmaceutical Group Co., Ltd.Global headquarters (the tallest white building)Company typePublicTraded asSHA 600998IndustryHealthcareFounded2000FounderLiu BaolinHeadquartersWuhan, ChinaArea servedWorldwideKey peopleLiu Baolin (Founder & Honorable President) Liu Zhaonian (Co-Founder) Liu Shulin (Co-Founder) Liu Changyun (President & CEO)ProductsMedical and pharmaceutical products and servicesRevenue US$19.8 billion (2022)Number of employees29338 [1]Webs...

Sport PowerliftingThe deadlift being performed by 2009 IPF World Champion Dean BowringFirst played20th century or earlier, United StatesCharacteristicsTypeInternational Powerlifting Federation (IPF) weight classes: Women: 47 kg, 52 kg, 57 kg, 63 kg, 69 kg, 76 kg, 84 kg, 84 kg+ Men: 59 kg, 66 kg, 74 kg, 83 kg, 93 kg, 105 kg, 120 kg, 120 kg+ PresenceOlympicNoParalympic1964 – presentWorld Games1981...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Sforza (disambigua). Sforzamerito et temporeInquartato: nel primo e nel quarto, d'oro all'aquila spiegata di nero, rostrata, lampassata e membrata di rosso e coronata del campo; nel secondo e nel terzo, d'argento alla biscia d'azzurro ondeggiante in palo e coronata d'oro, ingolante un moro di carnagione.Stato Ducato di Milano Aurea Repubblica Ambrosiana Repubblica Transpadana Repubblica Cisalpina Repubblica italiana Regno d'Italia ...

 

 

Biara Sahade Mar Behnam dan Marth SaraBagian depan biara (1999) Location within IraqInformasi biaraOrdoGereja Katolik Suryani (1790–98; dari 1839)Gereja Ortodoks Suryani (sampai 1790; 1798–1819)DidirikanAbad ke-4Didedikasikan kepadaMar Behnam, Mart SaraTokohPendiriSinharibSitusLokasidekat Beth KhdedaKoordinat36°08′16″N 43°24′23″E / 36.137778°N 43.406389°E / 36.137778; 43.406389 Biara Para Martir Mar Behnam dan Marth Sarah (bahasa Suryani: ܕܝܪܐ �...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: General Motors M platform – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Not to be confused with GM M platform (1985). Main article: List of GM platforms Motor vehicle platform GM M platformGeo MetroOverviewManufacturerG...

 

 

Pour les articles homonymes, voir Concile de Toulouse (1229). Plusieurs conciles se sont tenus à Toulouse. Historique Basilique Saint-Sernin de Toulouse 355 : Concile des Gaules (ou à Poitiers). 506 ou 507 : Convoqué par Alaric II pour faire adopter son code de loi. Il n'est connu que par une lettre de Césaire d'Arles. 828 et 829 : Sous la présidence de l'archevêque d'Arles, Nothon[1] ; les actes de ces conciles sont perdus. Juin 844 : Charles II le Chauve prom...