贝叶斯参数平均(Bayesian Parameter Averaging,BPA)是一种集成方法,它试图通过对假设空间中的假设进行抽样来近似贝叶斯最优分类器,并使用贝叶斯定律将它们组合起来。[14]与贝叶斯最优分类器不同,贝叶斯模型平均(Bayesian Model Averaging,BMA)可以实际实现。通常使用诸如MCMC的蒙特卡罗方法对假设进行采样。例如,可以使用吉布斯采样来绘制代表分布的假设。已经证明,在某些情况下,当以这种方式绘制假设并根据贝叶斯定律求平均时,该算法具有预期误差,该误差被限制为贝叶斯最优分类器的预期误差的两倍。[15]尽管这种技术理论正确,但早期工作中的实验结果表明,与简单的集成方法如Bagging相比,该方法促进了过拟合并且表现更差;[16] however, these conclusions appear to be based on a misunderstanding of the purpose of Bayesian model averaging vs. model combination.[17]然而,这些结论似乎是基于对目的的误解贝叶斯模型平均与模型组合。[18]此外,BMA的理论和实践取得了相当大的进展,最近的严格证明证明了BMA在高维设置中变量选择和估计的准确性,[19]并提供了实验证据,强调了BMA中的稀疏执行先验在缓解过拟合方面的作用。[20]
For each model m in the bucket:
Do c times: (where 'c' is some constant)
Randomly divide the training dataset into two datasets: A, and B.
Train m with A
Test m with B
Select the model that obtains the highest average score
^Monteith, Kristine; Carroll, James; Seppi, Kevin; Martinez, Tony. Turning Bayesian Model Averaging into Bayesian Model Combination(PDF). Proceedings of the International Joint Conference on Neural Networks IJCNN'11: 2657–2663. 2011 [2019-01-01]. (原始内容存档(PDF)于2014-07-05).
^Amini, Shahram M.; Parmeter, Christopher F. Bayesian model averaging in R(PDF). Journal of Economic and Social Measurement. 2011, 36 (4): 253–287 [2019-01-01]. (原始内容存档(PDF)于2017-12-03).
^ 36.036.1Woźniak, Michał; Graña, Manuel; Corchado, Emilio. A survey of multiple classifier systems as hybrid systems. Information Fusion. March 2014, 16: 3–17. doi:10.1016/j.inffus.2013.04.006.
^Giacinto, Giorgio; Roli, Fabio. Design of effective neural network ensembles for image classification purposes. Image and Vision Computing. August 2001, 19 (9-10): 699–707. doi:10.1016/S0262-8856(01)00045-2.
^Xia, Junshi; Yokoya, Naoto; Iwasaki, Yakira. A novel ensemble classifier of hyperspectral and LiDAR data using morphological features. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). March 2017: 6185–6189. doi:10.1109/ICASSP.2017.7953345.
^Mochizuki, S.; Murakami, T. Accuracy comparison of land cover mapping using the object-oriented image classification with machine learning algorithms. 33rd Asian Conference on Remote Sensing 2012, ACRS 2012. November 2012, 1: 126–133.
^Du, Peijun; Liu, Sicong; Xia, Junshi; Zhao, Yindi. Information fusion techniques for change detection from multi-temporal remote sensing images. Information Fusion. January 2013, 14 (1): 19–27. doi:10.1016/j.inffus.2012.05.003.
^Bruzzone, Lorenzo; Cossu, Roberto; Vernazza, Gianni. Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images. Information Fusion. December 2002, 3 (4): 289–297. doi:10.1016/S1566-2535(02)00091-X.
^Raj Kumar, P. Arun; Selvakumar, S. Distributed denial of service attack detection using an ensemble of neural classifier. Computer Communications. July 2011, 34 (11): 1328–1341. doi:10.1016/j.comcom.2011.01.012.
^Shabtai, Asaf; Moskovitch, Robert; Elovici, Yuval; Glezer, Chanan. Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey. Information Security Technical Report. February 2009, 14 (1): 16–29. doi:10.1016/j.istr.2009.03.003.
^Zhang, Boyun; Yin, Jianping; Hao, Jingbo; Zhang, Dingxing; Wang, Shulin. Malicious Codes Detection Based on Ensemble Learning. Autonomic and Trusted Computing. 2007: 468–477. doi:10.1007/978-3-540-73547-2_48.
^Menahem, Eitan; Shabtai, Asaf; Rokach, Lior; Elovici, Yuval. Improving malware detection by applying multi-inducer ensemble. Computational Statistics & Data Analysis. February 2009, 53 (4): 1483–1494. doi:10.1016/j.csda.2008.10.015.
^Locasto, Michael E.; Wang, Ke; Keromytis, Angeles D.; Salvatore, J. Stolfo. FLIPS: Hybrid Adaptive Intrusion Prevention. Recent Advances in Intrusion Detection. 2005: 82–101. doi:10.1007/11663812_5.
^Giacinto, Giorgio; Perdisci, Roberto; Del Rio, Mauro; Roli, Fabio. Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Information Fusion. January 2008, 9 (1): 69–82. doi:10.1016/j.inffus.2006.10.002.
^Mu, Xiaoyan; Lu, Jiangfeng; Watta, Paul; Hassoun, Mohamad H. Weighted voting-based ensemble classifiers with application to human face recognition and voice recognition. 2009 International Joint Conference on Neural Networks. July 2009. doi:10.1109/IJCNN.2009.5178708.
^Yu, Su; Shan, Shiguang; Chen, Xilin; Gao, Wen. Hierarchical ensemble of Gabor Fisher classifier for face recognition. Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on Automatic Face and Gesture Recognition (FGR06). April 2006: 91–96. doi:10.1109/FGR.2006.64.
^Su, Y.; Shan, S.; Chen, X.; Gao, W. Patch-based gabor fisher classifier for face recognition. Proceedings - International Conference on Pattern Recognition. September 2006, 2: 528–531. doi:10.1109/ICPR.2006.917.
^Rieger, Steven A.; Muraleedharan, Rajani; Ramachandran, Ravi P. Speech based emotion recognition using spectral feature extraction and an ensemble of kNN classifiers. Proceedings of the 9th International Symposium on Chinese Spoken Language Processing, ISCSLP 2014. 2014: 589–593. doi:10.1109/ISCSLP.2014.6936711.
^Krajewski, Jarek; Batliner, Anton; Kessel, Silke. Comparing Multiple Classifiers for Speech-Based Detection of Self-Confidence - A Pilot Study. 2010 20th International Conference on Pattern Recognition. October 2010: 3716–3719. doi:10.1109/ICPR.2010.905.
^Rani, P. Ithaya; Muneeswaran, K. Recognize the facial emotion in video sequences using eye and mouth temporal Gabor features. Multimedia Tools and Applications. 25 May 2016, 76 (7): 10017–10040. doi:10.1007/s11042-016-3592-y.
^Rani, P. Ithaya; Muneeswaran, K. Facial Emotion Recognition Based on Eye and Mouth Regions. International Journal of Pattern Recognition and Artificial Intelligence. August 2016, 30 (07): 1655020. doi:10.1142/S021800141655020X.
^Rani, P. Ithaya; Muneeswaran, K. Emotion recognition based on facial components. Sādhanā. 28 March 2018, 43 (3). doi:10.1007/s12046-018-0801-6.
^Louzada, Francisco; Ara, Anderson. Bagging k-dependence probabilistic networks: An alternative powerful fraud detection tool. Expert Systems with Applications. October 2012, 39 (14): 11583–11592. doi:10.1016/j.eswa.2012.04.024.
^Sundarkumar, G. Ganesh; Ravi, Vadlamani. A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance. Engineering Applications of Artificial Intelligence. January 2015, 37: 368–377. doi:10.1016/j.engappai.2014.09.019.
^ 61.061.1Kim, Yoonseong; Sohn, So Young. Stock fraud detection using peer group analysis. Expert Systems with Applications. August 2012, 39 (10): 8986–8992. doi:10.1016/j.eswa.2012.02.025.
^Savio, A.; García-Sebastián, M.T.; Chyzyk, D.; Hernandez, C.; Graña, M.; Sistiaga, A.; López de Munain, A.; Villanúa, J. Neurocognitive disorder detection based on feature vectors extracted from VBM analysis of structural MRI. Computers in Biology and Medicine. August 2011, 41 (8): 600–610. doi:10.1016/j.compbiomed.2011.05.010.
^Ayerdi, B.; Savio, A.; Graña, M. Meta-ensembles of classifiers for Alzheimer's disease detection using independent ROI features. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). June 2013, (Part 2): 122–130. doi:10.1007/978-3-642-38622-0_13.
^Gu, Quan; Ding, Yong-Sheng; Zhang, Tong-Liang. An ensemble classifier based prediction of G-protein-coupled receptor classes in low homology. Neurocomputing. April 2015, 154: 110–118. doi:10.1016/j.neucom.2014.12.013.