逆散射变换

逆散射变换是求解某些非线性偏微分方程的一种方法,在某种意义上是傅里叶变换的非线性推广。这种方法的核心思想是,从散射数据的演变中恢复势的演变:逆散射指的是从散射矩阵中恢复势的问题。

逆散射变换可用于许多所谓“完全可解模型”,即完全可积的无限维系统。

概述

逆散射变换首先由Clifford S. Gardner, John M. Greene, and Martin D. Kruskal et al. (1967, 1974提出,用于求解KdV方程,并很快扩展到非线性薛定谔方程正弦-戈尔登方程户田晶格方程。后来也用于求解KP方程石森方程迪姆方程等等。博格莫尼方程(对于给定的规范群与定向黎曼3流形)提供了一族例子,其解是磁单极子。 用逆散射法得到的解有一个特点,就是存在孤波,是类似于粒子又类似于波的解,线性偏微分方程中没有这种解。“孤波”是非线性光学的概念。 逆散射问题可以写作黎曼–希尔伯特分解问题,至少在一个空间维度的方程中是这样。这种表述可以推广到多阶微分算子和周期势。 在更高的空间维度中,会遇到“非局部”黎曼–希尔伯特分解问题(用卷积代替乘法)或Dbar问题

例子:KdV方程

KdV方程是非线性分散演化偏微分方程,涉及有两个变量(空间变量x与时间变量t)的函数u

其中分别表示关于tx偏导数

x的已知函数,要解初值问题,可将薛定谔特征方程

与这个方程联系起来,其中tx的未知函数,u是KdV方程的解,除了在时未知。常数是一个特征值。

根据薛定谔方程,可得

将其代入KdV方程并积分,得到

其中CD为常数。

解法

Step 1. 确定非线性偏微分方程。这通常是通过分析所研究的物理实现的。

Step 2. 应用正向散射。关键是找到Lax 对,Lax 对由两个线性算子组成,即。极为重要的是,特征值与时间无关,即实现这一点的必要条件与充分条件如下:取的时间导数,得到

插入,得到

重排最右侧的项,得到

因此,

由于,这意味着当且仅当

这是Lax方程,当中的时间导数,明确地依赖于。之所以这样定义微分,是因为的最简单实例,即薛定谔算子(参薛定谔方程):

其中u是“势”。比较表达式,可以发现因此可以忽略第一项。

拟合出适当的Lax对后,Lax方程应可恢复原来的非线性PDE。

Step 3. 确定与每个特征值相关的特征函数、规范常数与反射系数的时间演化,它们构成所谓散射数据。演化由线性常微分方程给出,可以求解。

Step 4. 通过求解马琴科方程[1][2]这一线性积分方程,进行逆散射,从而获得原非线性PDE的最终解。为此,需要所有散射数据。若反射系数为零,过程会简单很多。若是一阶微分或二阶差分,这步就会起作用,但对高阶算子则不一定。不过,在所有情况下,逆散射问题都可以简化为黎曼–希尔伯特问分解问题。(两种方法见于Ablowitz-Clarkson (1991)。数学上的严格处理方法参Marchenko (1986)。)

可积方程的例子

另见

参考文献

  1. ^ Gel’fand, I. M. & Levitan, B. M., "On the determination of a differential equation from its spectral function". American Mathematical Society Translations, (2)1:253–304, 1955.
  2. ^ V. A. Marchenko, "Sturm-Liouville Operators and Applications", Birkhäuser, Basel, 1986.

阅读更多

  • M. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
  • N. Asano, Y. Kato, Algebraic and Spectral Methods for Nonlinear Wave Equations, Longman Scientific & Technical, Essex, England, 1990.
  • M. Ablowitz, P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.
  • Gardner, Clifford S.; Greene, John M.; Kruskal, Martin D.; Miura, Robert M., Method for Solving the Korteweg-deVries Equation, Physical Review Letters, 1967, 19 (19): 1095–1097, Bibcode:1967PhRvL..19.1095G, doi:10.1103/PhysRevLett.19.1095 
  • Gardner, Clifford S.; Greene, John M.; Kruskal, Martin D.; Miura, Robert M., Korteweg-deVries equation and generalization. VI. Methods for exact solution., Comm. Pure Appl. Math., 1974, 27: 97–133, MR 0336122, doi:10.1002/cpa.3160270108 
  • V. A. Marchenko, "Sturm-Liouville Operators and Applications", Birkhäuser, Basel, 1986.
  • J. Shaw, Mathematical Principles of Optical Fiber Communications, SIAM, Philadelphia, 2004.
  • Eds: R.K. Bullough, P.J. Caudrey. "Solitons" Topics in Current Physics 17. Springer Verlag, Berlin-Heidelberg-New York, 1980.

外部链接

Read other articles:

Disney's Hollywood StudiosBerkas:Disney's Hollywood Studios.svgThe Chinese Theatre, bagian utama dari Disney's Hollywood Studios[1]LokasiWalt Disney World Resort, Bay Lake, Florida, Amerika SerikatKoordinat28°21′25″N 81°33′22″W / 28.357°N 81.5561°W / 28.357; -81.5561Koordinat: 28°21′25″N 81°33′22″W / 28.357°N 81.5561°W / 28.357; -81.5561TemaDunia imajinasi HollywoodPemilikThe Walt Disney CompanyOperatorWalt Disney...

 

Manhattan, di seberang pelabuhan dari Liberty State Park Upper New York Bay di mulut Sungai Hudson (kiri) New York Harbor merujuk pada jalur air muara sungai di dekat mulut Sungai Hudson yang berakhir di Teluk New York. Meskipun U.S. Board of Geographic Names tidak menggunakan sebutan ini, New York Harbor memiliki manfaat pemerintahan, perdagangan, dan lingkungan yang penting. Awalnya digunakan untuk merujuk Upper New York Bay, sebutan ini juga digunakan untuk mendeskripsikan Port of New York...

 

Halaman ini berisi artikel tentang memoar tahun 1853. Untuk film 2013 yang diadaptasi dari memoar ini, lihat 12 Years a Slave (film). Twelve Years a Slave Illustrasi dari Twelve Years a Slave (1855)PengarangSolomon NorthupNegaraAmerika SerikatBahasaInggrisGenreOtobiografiTanggal terbit1853Jenis mediaCetak (sampul keras)ISBNISBN N/A Invalid ISBN Twelve Years a Slave (1853) adalah memoar oleh Solomon Northup yang disunting dan dikisahkan kepada David Wilson. Memoar ini mengi...

Boleyn GroundUpton Park Informasi stadionNama lengkapThe Boleyn GroundPemilikWest Ham United F.C.OperatorWest Ham United F.C.LokasiLokasiGreen Street, Upton Park,London E13 9AZ,  InggrisKoordinat51°31′55″N 0°2′22″E / 51.53194°N 0.03944°E / 51.53194; 0.03944Koordinat: 51°31′55″N 0°2′22″E / 51.53194°N 0.03944°E / 51.53194; 0.03944KonstruksiDibuka1904[1]Ditutup2016ArsitekHenri Pillipe Tiite ParkerData teknisPerm...

 

2011 Colorado Springs mayoral election ← 2007 April 5, 2011 (first round)May 17, 2011 (runoff) 2015 → Turnout58.75% (first round)[1]64.03% (runoff)[2]   Candidate Steve Bach Richard Skorman First round vote 29,767 31,889 First round percentage 33.46% 35.85% Runoff vote 56,656 42,522 Runoff percentage 57.13% 42.87%   Candidate Brian Bahr Tom Gallagher First round vote 13,576 4,703 First round percentage 15.26% 5.29% Mayor before election Lionel ...

 

Not to be confused with Thomas J. Barratt advertising pioneer. This article is about the Coast Guard officer and administrator. For other uses, see Tom Barrett. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Thomas J. Barrett...

Human settlement in EnglandWhittonThe High StreetWhittonLocation within Greater LondonArea3.56 km2 (1.37 sq mi)Population20,065 (2011 Census Heathfield+Whitton 2011)[1][2]• Density5,636/km2 (14,600/sq mi)OS grid referenceTQ145735London boroughRichmondCeremonial countyGreater LondonRegionLondonCountryEnglandSovereign stateUnited KingdomPost townTWICKENHAMPostcode districtTW2Post townHOUNSLOWPostcode distri...

 

American lawyer and diplomat Jamie HarpootlianUnited States Ambassador to Slovenia IncumbentAssumed office February 17, 2022PresidentJoe BidenPreceded byLynda Blanchard Personal detailsBornJamie LindlerNationalityAmericanSpouse Dick Harpootlian ​(m. 2007)​EducationMary Baldwin University (BA)Tulane University (JD) Jamie Lindler Harpootlian is an American lawyer who has served as the United States ambassador to Slovenia since 2022. Education Harpootlian receive...

 

This article is about the town and archaeological type site. For the archaeological culture, see Naqada culture. For the drum, see Naqareh. For other uses, see Naqada (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be ...

Not to be confused with Somali Custodial Corps. Somaliland Custodial CorpsCiidanka Asluubta Somaliland فيلق حراسة صوماليلانديLogo of the Custodial CorpsActive1993-presentCountry SomalilandAllegiance SomalilandBranch Somaliland Armed ForcesTypePrison Service and Military ProvostRoleMilitary PoliceGarrison/HQCustodial Corps Central Command, HargeisaMotto(s)Kahortag iyo U AdeegidColorsGreen and GoldEngagementsSomaliland War of IndependenceCommandersChief of Custodia...

 

Paolo Gerolamo Brusco Paolo Gerolamo Brusco (Savona, 8 giugno 1742 – 30 marzo 1820) è stato un pittore italiano del Settecento che operò soprattutto in Liguria. Indice 1 Biografia 2 Opere 3 Bibliografia 4 Altri progetti 5 Collegamenti esterni Biografia Paolo Gerolamo Brusco (soprannominato anche Bruschetto) nella sua lunga carriera ha prodotto numerosi quadri di soggetto sacro e profano che ornano chiese, oratori e palazzi di tutta la Liguria. Figlio di Giovanni Battista e Anna Maria Rom�...

 

The Oxfordshire MuseumThe entrance to the museumShown within OxfordshireLocationFletcher's House, Park Street, Woodstock, Oxfordshire, EnglandCoordinates51°50′54″N 1°21′26″W / 51.8483°N 1.3572°W / 51.8483; -1.3572Websitewww.oxfordshire.gov.uk/the_oxfordshire_museum The Oxfordshire Museum (also known as Oxfordshire County Museum) is in Woodstock, Oxfordshire, England, located in Fletcher's House, Park Street, opposite the Bear Hotel.[1] It is a regi...

On this ledge are some ring-shaped structures up to 2 metres across. These are moulds of gymnosperms (early coniferous trees) which died after being encased in sediment. Most of the trees were upright leaving round holes, but some had fallen leaving elongate coffin-shaped moulds. The Fossil Forest is the remains of an ancient submerged forest from Jurassic times, located to the east of Lulworth Cove on the Isle of Purbeck in Dorset, England.[1] It lies on the Jurassic Coast, on a wid...

 

<< Januari >> Mi Sn Sl Ra Ka Ju Sa 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31   2024 Januari adalah hari lahir Bilal bulan pertama dalam setahun pada tarikh Kalender Gregorius dan Julius.[1] Bulan Januari juga menjadi bulan pertama dari ketujuh bulan yang memiliki 31 hari. Tanggal 1 Januari, yang menjadi hari pertama dalam bulan ini sekaligus menjadi hari pertama dalam setahun, dikenal dengan nama Hari Tahun Baru atau...

 

Danau Kakaban, adalah air laut yang terperangkap di Pulau Kakaban, ditambah dengan air dari dalam tanah dan air hujan sejak 2 juta tahun lalu. Danau Kakaban merupakan danau prasejarah yaitu zaman peralihan Holosin. Luasnya sekitar 5 km², berdinding karang terjal setinggi 50 meter, yang mengakibatkan air laut yang terperangkap tidak lagi bisa keluar, menjadi danau. Secara administratif, Danau Kakaban termasuk wilayah Kabupaten Berau, Kalimantan Timur. Biota dalam Danau Karena perubahan dan ev...

For the language, see Braj Bhasha. Brij Bhoomi redirects here. For the 1982 film, see Brij Bhoomi (film). Region in IndiaBrajRegiontop to bottom: Radha Krishna at Kirti Temple, Barsana, Krishna Janmasthan in Mathura, Radha Rani Temple in Barsana, Prem Mandir in Vrindavan and Kusum Sarovar in Govardhan Hill.Country IndiaRegionNorthern IndiaProposed capitalsNoida, AgraProposed Districts List Mathura districtAgra districtHathras districtFirozabad districtAligarh districtKasganj districtBhar...

 

FIGC – Federazione Italiana Giuoco CalcioLogo Discipline Calcio Calcio a 5 Beach soccer Fondazione1898 a Torino Nazione Italia ConfederazioneFIFA (dal 1905)UEFA (dal 1954) Sede Roma Presidente Gabriele Gravina Sito ufficialewww.figc.it/ Modifica dati su Wikidata · Manuale La Federazione Italiana Giuoco Calcio, meglio nota come Federcalcio o con l'acronimo FIGC, è associazione riconosciuta, con personalità giuridica, federata al Comitato Olimpico Nazionale Italiano e unica ...

 

Election for the governor of North Dakota For related races, see 1968 United States gubernatorial elections. 1968 North Dakota gubernatorial election ← 1964 November 5, 1968 1972 →   Nominee William L. Guy Robert P. McCarney Party Democratic–NPL Republican Popular vote 135,955 108,382 Percentage 54.82% 43.70% County results Guy:      40–50%      50–60%      60–70% McCarney:  ...

American actress (born 1996) Abigail BreslinBreslin in 2015Born (1996-04-14) April 14, 1996 (age 28)New York City, U.S.OccupationActressYears active1999–presentSpouse Ira Kunyansky ​(m. 2023)​RelativesSpencer Breslin (brother) Abigail Breslin (born April 14, 1996)[1] is an American actress. Following a string of film parts as a young child, she rose to prominence at age 10 when she played Olive Hoover in Little Miss Sunshine (2006), for which s...

 

此條目没有列出任何参考或来源。 (2016年5月14日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。   关于维基百科中的勇於更新頁面,请见Wikipedia:BOLD 普通体与粗体 粗体是在正常字体样式(或字型)的基础上,通过加粗笔画实现的一种字体样式。例如,“维基百科”的粗体样式为“维基百科�...