穆尔-彭罗斯广义逆

穆尔-彭罗斯广义逆(英語:Moore–Penrose pseudoinverse),通常標記為,是著名的广义逆矩阵之一。

1903年,埃里克·伊瓦爾·弗雷德霍姆提出积分算子的伪逆的概念。穆尔-彭罗斯广义逆先后被E·H·穆爾(1920年)[1]阿尔内·比耶哈马尔英语Arne Bjerhammar(1951年) [2]羅傑·潘洛斯(1955年)[3]发现或描述。

它常被用于求得或简化非一致线性方程组的最小范数最小二乘解(最小二乘法)。

矩阵的穆尔-彭罗斯广义逆在实数域和复数域上都是唯一的,并且可以通过奇异值分解求得。

定义

定义一

PS表示到向量空间S上的正交投影。对于任意一个m乘n的复矩阵A,设R(A)表示A的值域空间。穆尔于1935年证明矩阵A的广义逆矩阵G必须满足的条件:

以上两个条件称为穆尔条件。满足穆尔条件的矩阵G称为矩阵A的穆尔逆矩阵。


定义二

彭罗斯于1955年提出了定义广义逆矩阵的另外一组条件[3]

  1. 不一定是单位矩阵,但却不会改变的列向量。
  2. 是乘法半群弱逆
  3. 埃尔米特矩阵
  4. 也是埃尔米特矩阵

以上四个条件常称穆尔-彭罗斯条件。满足全部四个条件的矩阵G,就称为A的穆尔-彭罗斯广义逆矩阵。

性质

从穆尔-彭罗斯条件出发,彭罗斯推导出了穆尔-彭罗斯广义逆的一些性质[3]

  • 都是幂等矩阵。

存在性和唯一性

伪逆存在且唯一:对于任何矩阵,恰好有一个矩阵满足定义的四个性质。[4]

满足该定义的第一个条件的矩阵被称为广义逆。如果该矩阵也满足第二个定义,它就被称为广义反身逆阵(generalized reflexive inverse)。广义逆矩阵总存在,但一般不唯一。唯一性是最后两个条件的结果。

基本性质

这些性质的证明可以在維基教科書中找到。

  • 如果 有实数项,那么 也有。
  • 如果 是可逆的,它的伪逆就是它的逆矩阵,即: .[5]:243
  • 零矩阵的伪逆是它的转置。
  • 矩阵伪逆的伪逆是原矩阵,即: .[5]:245
  • 伪转置与转置、复共轭和共轭转置可以交换:[5]:245
    , , .
  • 矩阵 的标量乘法的伪逆是 的标量的倒数的乘法:
    对于 .

恒等式

下面的恒等式可以用来判定部分涉及伪逆的子表达式的正确性:同样的,将 替换为 会得到:当用 替代 时,会得到:

埃尔米特情况

伪逆的计算可以简化为其在埃尔米特情况下的构造,这可以通过等价关系实现:其中 是埃尔米特矩阵。

乘积

,下列等式等价:[6]

下方列出了 的充分条件:

  1. 的列单位正交(此时),或
  2. 的行单位正交 (此时 ) ,或
  3. 的列线性无关(此时 ) 同时 的行线性无关(此时 ),或
  4. ,或

下方列出了 的必要条件:

由最后一个充分条件得出等式:注意: 等式 一般不成立,例如:

投影

是正交投影算子,即它们是埃尔米特矩阵()和幂等矩阵()。以下性质成立:

  • 是正交投影算子,投影到 的值域(也就是 的正交补空间)。
  • 是正交投影算子,投影到 的值域(也就是 的核的正交补空间)。
  • 是正交投影算子,投影到 的核。
  • 是正交投影算子,投影到 的核。[4]

最后两条性质隐含了下列等式:

如果 是埃尔米特矩阵和幂等矩阵(当且仅当它为正交投影矩阵),则对于任意矩阵 ,下式成立:[7]这一条性质可以如此证明:定义矩阵 , ,当 是埃尔米特矩阵和幂等矩阵时,通过验证伪逆的性质可以检查 确实是 的一个伪逆。从上一条性质可以看出,当 是埃尔米特矩阵和幂等矩阵时,对于任意矩阵

是一个正交投影矩阵,则它的伪逆就是它自身,即


几何结构

如果我们把矩阵看作是一个在数域 上的线性映射 , 那么 可以被分解如下。首先定义符号: 表示直和, 表示正交补, 表示映射的核, 表示映射的像。注意 。 限制条件 则是一个同构。这意味着 上时这个同构的逆,在 上则是零。

换而言之,对于给定的 要找到 ,首先将 正交投影在 的值域中,找到点 ,然后构建 ,即就是在 中,会被 投影到 的点。这是 的一个平行于 的核的仿射子空间。这个子空间中长度最小的元素(也就是最靠近原点的元素),就是我们寻找的 的解。它可以通过从 中选择任意元素,并将其投影在 的核的正交补空间而得到。

以上描述与线性系统的最小范数解密切相关。


子空间

极限

伪逆可以由极限定义:(参见吉洪诺夫正则化)。当 不存在时,这些极限仍然存在。[4]:263

连续性

与一般的矩阵求逆不同,求伪逆的过程并不连续:如果序列 收敛到矩阵 (在最大范数或弗罗贝尼乌斯范数意义下),则 不一定收敛于 . 然而,如果所有的矩阵 有相同的秩,则 将收敛于 .[8]

导数关系

实值伪逆矩阵的导数,该矩阵在某点处具有恒定的秩 可以用原矩阵的导数来计算:[9]

例子

对于可逆矩阵,其广义逆为其一般的逆矩阵,所以以下仅举一些不可逆矩阵的例子。

  • 对于,其广义逆矩阵为(通常零矩阵的广义逆矩阵为其转置)。该广义逆矩阵的唯一性可以认为时由性质得出的,因为与零矩阵相乘总会得到零矩阵。
  • 对于,其广义逆矩阵为
    • 事实上,,所以
    • 类似的, ,由此
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为 。对于该矩阵,其左逆存在且等于,事实上,

参考

书籍

  • 张贤达. 矩阵分析与应用. 北京: 清华大学出版社. 2004年9月: 85–99. ISBN 7-302-09271-0 (中文). 

文献

  1. ^ Moore, E. H. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society. 1920, 26 (9): 394–395 [2012-12-01]. doi:10.1090/S0002-9904-1920-03322-7. (原始内容存档于2020-08-13). 
  2. ^ Bjerhammar, Arne. Application of calculus of matrices to method of least squares; with special references to geodetic calculations. Trans. Roy. Inst. Tech. Stockholm. 1951, 49. 
  3. ^ 3.0 3.1 3.2 Penrose, Roger. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society. 1955, 51: 406–413. doi:10.1017/S0305004100030401. 
  4. ^ 4.0 4.1 4.2 Golub, Gene H.; Charles F. Van Loan. Matrix computations有限度免费查阅,超限则需付费订阅 3rd. Baltimore: Johns Hopkins. 1996: 257–258. ISBN 978-0-8018-5414-9. 
  5. ^ 5.0 5.1 5.2 Stoer, Josef; Bulirsch, Roland. Introduction to Numerical Analysis 3rd. Berlin, New York: Springer-Verlag. 2002. ISBN 978-0-387-95452-3. .
  6. ^ Greville, T. N. E. Note on the Generalized Inverse of a Matrix Product. SIAM Review. 1966-10-01, 8 (4): 518–521 [2022-05-10]. ISSN 0036-1445. doi:10.1137/1008107. (原始内容存档于2022-06-17). 
  7. ^ Maciejewski, Anthony A.; Klein, Charles A. Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments. International Journal of Robotics Research. 1985, 4 (3): 109–117. S2CID 17660144. doi:10.1177/027836498500400308. hdl:10217/536可免费查阅. 
  8. ^ Rakočević, Vladimir. On continuity of the Moore–Penrose and Drazin inverses (PDF). Matematički Vesnik. 1997, 49: 163–72 [2022-05-10]. (原始内容 (PDF)存档于2022-04-03). 
  9. ^ Golub, G. H.; Pereyra, V. The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate. SIAM Journal on Numerical Analysis. April 1973, 10 (2): 413–32. Bibcode:1973SJNA...10..413G. JSTOR 2156365. doi:10.1137/0710036. 

Read other articles:

Aldrin Petrus Mongan Komandan Lanud El TariMasa jabatan21 Januari 2022 – 9 November 2023 PendahuluUmar FathurrohmanPenggantiDjoko Hadipurwanto Informasi pribadiLahir24 Januari 1971 (umur 53)Laikit, Dimembe, Minahasa Utara, Sulawesi UtaraKebangsaanIndonesiaSuami/istriNy. Simon Petrus MonganAlma materAkademi Angkatan Udara (1992)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan UdaraMasa dinas1992—sekarangPangkat Marsekal Pertama TNISatuanKorps PenerbangSunting ...

 

 

For the Union Army officer, see Howard Mather Burnham. Mather Howard BurnhamM. Howard Burnham, 1915Born(1870-05-27)May 27, 1870Tivoli, Minnesota (near Mankato), United StatesDiedMay 4, 1917(1917-05-04) (aged 46)New York City, USBurial placeNew York City, New YorkNationalityAmericanAlma materMichigan Technological UniversityOccupation(s)Mining engineer, Spy[1]SpousesMargaretConstance Newton (Connie)Children4Parent(s)Rev Edwin Otway BurnhamRebecca Russell BurnhamEspionage acti...

 

 

Voci principali: Ducato di Milano, Governatore di Milano. Ducato di Milano (dettagli) (dettagli) Informazioni generaliCapoluogoMilano Popolazione750.000 (circa) Dipendente da Regno di Francia • Sacro Romano Impero Evoluzione storicaInizio6 settembre 1499 CausaTrattato di Trento (1501) Fine26 settembre 1525 CausaGuerra della Lega di Cambrai Preceduto da Succeduto da Ducato di Milano Ducato di Milano Cartografia Il Ducato di Milano cadde con intermittenza sotto dominazione francese nel primo...

Icelandic politician (born 1953) This is an Icelandic name. The last name is a family name, but this person is referred to by the given name Kristján. Kristján L. MöllerMinister of CommunicationsIn office24 May 2007 – 2 September 2010Prime MinisterGeir Haarde, Jóhanna SigurðardóttirPreceded bySturla Böðvarsson (as Minister of Communications and Transportation)Succeeded byÖgmundur Jónasson (as Minister of Transport, Communications and Local Government) Personal detailsBorn...

 

 

Hapoel Ramat Gan Giv'atayimCalcio Urduns Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Dati societari Città Ramat Gan, Giv'atayim Nazione  Israele Confederazione UEFA Federazione IFA Campionato Liga Leumit Fondazione 1927 Allenatore Dani Golan Stadio Winter Stadium, Ramat Gan(8 000 posti) Sito web www.hapoelrg-fc.co.il Palmarès Titoli nazionali 1 Campionato di calcio israeliano Trofei nazionali 2 Coppe d'Israele Si invita a seguire il modello di voce Il Moadon K...

 

 

Extinct species of vascular plant RhyniaTemporal range: Early Devonian PreꞒ Ꞓ O S D C P T J K Pg N Reconstruction of Rhynia gwynne-vaughanii, redrawn after Kenrick & Crane (1997:101)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Subdivision: †Rhyniophytina Class: †Rhyniopsida Order: †Rhyniales Family: †Rhyniaceae Genus: †RhyniaKidst. & W.H.Lang (1917) Type species R. gwynne-vaughaniiKidst. & W.H.Lang (1917) Species R. gemuendensis Hirmer ...

Argentine association football player Nahuel Guzmán Guzmán with Tigres UANL in 2015Personal informationFull name Nahuel Ignacio Guzmán Palomeque[1]Date of birth (1986-02-10) 10 February 1986 (age 38)[2]Place of birth Rosario, Santa Fe, ArgentinaHeight 1.92 m (6 ft 4 in)[2]Position(s) GoalkeeperTeam informationCurrent team UANLNumber 1Youth career Newell's Old BoysSenior career*Years Team Apps (Gls)2005–2014 Newell's Old Boys 81 (0)2008–2009 �...

 

 

Construction of an angle equal to one third a given angle Angles may be trisected via a neusis construction using tools beyond an unmarked straightedge and a compass. The example shows trisection of any angle θ > 3π/4 by a ruler with length equal to the radius of the circle, giving trisected angle φ = θ/3. Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbi...

 

 

Norwegian radio and television personality Ada Haug and Odd Grythe in 1965 Odd Horn Grythe (14 November 1918 – 7 February 1995) was a Norwegian radio and television personality. Personal life He was born in Lillehammer as a son of a travelling salesman. He had four older siblings. From 1955 to 1958 he was married to Kirsten Sørlie. In March 1962 he married Ada Haug.[1] With his first wife he had the daughter Hilde Grythe, who married Terje Tønnesen.[2] Career He finished h...

Democratic politician from California John HoeppelMember of the U.S. House of Representativesfrom California's 12th districtIn officeMarch 4, 1933 – January 3, 1937Preceded byDistrict createdSucceeded byJerry Voorhis Personal detailsBornJohn Henry Hoeppel(1881-02-10)February 10, 1881Tell City, Indiana, U.S.DiedSeptember 21, 1976(1976-09-21) (aged 95)Arcadia, California, U.S.Political partyDemocraticOther politicalaffiliationsProhibition (1946) John Henry Hoeppel (F...

 

 

American basketball player For other people named Robert Gross, see Robert Gross (disambiguation). Bob GrossGross playing against the Boston Celtics on November 26, 1980Personal informationBorn (1953-08-03) August 3, 1953 (age 70)San Pedro, California, U.S.Listed height6 ft 6 in (1.98 m)Listed weight200 lb (91 kg)Career informationHigh schoolFermin Lasuen(San Pedro, California)College Seattle (1971–1972) Long Beach State (1973–1975) NBA draft1975: 2nd round, ...

 

 

Филиал Московского государственного университета имени М. В. Ломоносова в городе Ташкенте(филиал МГУ в Ташкенте) Международное название Tashkent Branch of Moscow State University Год основания 24 февраля 2006 года Руководитель филиала Часовских А.А. Студенты 434(397 — бакалавриат, 37 — магистрат...

Chronologies Données clés 1996 1997 1998  1999  2000 2001 2002Décennies :1960 1970 1980  1990  2000 2010 2020Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

 

 

Not to be confused with I'm Your Pusher (Scooter song). 1988 single by Ice-TI'm Your PusherSingle by Ice-Tfrom the album Power B-sideGirls L.G.B.N.A.F.ReleasedAugust 23, 1988StudioSyndicate Studios West (Los Angeles, California)GenreGangsta rapLength5:35LabelSireSongwriter(s) Tracy Marrow Charles Glenn Curtis Mayfield Producer(s) Ice-T Afrika Islam Ice-T singles chronology Colors (1988) I'm Your Pusher (1988) High Rollers (1988) Music videoI'm Your Pusher on YouTube I'm Your Pusher is a 1988 ...

 

 

عبد الحليم اللاوند معلومات شخصية الميلاد 29 أغسطس 1934   الموصل  الوفاة سنة 2000   بغداد  مواطنة المملكة العراقية الجمهورية العراقية الجمهورية العراقية  الحياة العملية المهنة شاعر،  وكاتب  تعديل مصدري - تعديل   عبد الحليم عبد المجيد اللّاوند (29 آب/أغسطس 1934 - 20...

Orang kulit hitam yang terkenalAtas: W.E.B. Du Bois, MLK dan Nelson MandelaBawah: Wangari Maathai, Rosa Parks, Sojourner Truth Seorang wanita Kongo Orang kulit hitam adalah sebuah istilah yang digunakan di negara-negara tertentu, sering kali secara sosial berdasarkan pada sistem klasifikasi rasial atau etnisitas, untuk menyebut orang yang berkulit hitam dibandingkan dengan penduduk lainnya. Karena itu, pengatiannya banyak ragamnya di dalam maupun antar masyarakat, dan tergantung pada konteks....

 

 

Portuguese association football club For other uses, see Benfica (disambiguation). Football clubBenfica e Castelo BrancoFull nameSport Benfica e Castelo BrancoNickname(s)Águia Albicastrense (Castelo Branco Eagles)[1]AlbicastrensesFounded24 March 1924; 100 years ago (24 March 1924)GroundEstádio Municipal Vale do Romeiro, Castelo BrancoCapacity12,000ChairmanJorge NevesManagerDani MatosLeagueCampeonato de Portugal2022-23Serie C, 5thWebsiteClub website Sport Benfica e Caste...

 

 

  لمعانٍ أخرى، طالع هارتفورد (توضيح). هارتفورد   الإحداثيات 44°22′22″N 70°20′48″W / 44.372777777778°N 70.346666666667°W / 44.372777777778; -70.346666666667   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة أكسفورد  خصائص جغرافية  المساحة 45.08 ميل مربع  ...

Extinct Celtic languages of Iberia Hispano-CelticGeographicdistributionIberian PeninsulaLinguistic classificationIndo-EuropeanCelticContinental CelticHispano-CelticSubdivisions Celtiberian † Gallaecian † Language codes Part of a series onIndo-European topics Languages List of Indo-European languages Extant Albanoid Albanian Armenian Balto-Slavic Baltic Slavic Celtic Germanic Hellenic Greek Indo-Iranian Indo-Aryan Iranian Nuristani Italic Romance Extinct Anatolian Tocharian Paleo-Balkan Da...

 

 

French physician and psychologist (1859–1947) For the 19th-century French bibliographer, see Pierre Jannet (bibliographer). You can help expand this article with text translated from the corresponding article in French. (June 2012) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary an...