拉格朗日中值定理,也簡稱均值定理,是以法国数学家约瑟夫·拉格朗日命名,為罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。拉格朗日中值定理也叫做有限增量定理。
如果函数 f ( x ) {\displaystyle f(x)} 满足:
则 ∃ ∃ --> ξ ξ --> , a < ξ ξ --> < b {\displaystyle \exists \xi ,\;a<\xi <b} ,使 f ′ ( ξ ξ --> ) = f ( b ) − − --> f ( a ) b − − --> a {\displaystyle f'(\xi )={\frac {f(b)-f(a)}{b-a}}} 。
令 g ( x ) = f ( b ) − − --> f ( a ) b − − --> a ⋅ ⋅ --> ( x − − --> a ) + f ( a ) − − --> f ( x ) {\displaystyle g(x)={\frac {f(b)-f(a)}{b-a}}\cdot (x-a)+f(a)-f(x)} 。那么
1. f ( b ) − − --> f ( a ) = f ′ ′ --> ( a + θ θ --> ( b − − --> a ) ) ( b − − --> a ) , 0 < θ θ --> < 1 {\displaystyle f(b)-f(a)=f^{\prime }(a+\theta (b-a))(b-a),0<\theta <1} ;
2. f ( a + h ) − − --> f ( a ) = f ′ ′ --> ( a + θ θ --> h ) h , 0 < θ θ --> < 1 {\displaystyle f(a+h)-f(a)=f^{\prime }(a+\theta h)h,0<\theta <1} . 或 f ( x + Δ Δ --> x ) − − --> f ( x ) = f ′ ′ --> ( x + θ θ --> Δ Δ --> x ) Δ Δ --> x , 0 < θ θ --> < 1 {\displaystyle f(x+\Delta x)-f(x)=f^{\prime }(x+\theta \Delta x)\Delta x,0<\theta <1} .