Об'єктом задачі SAT є булева формула, що складається тільки з назв змінних, дужок і операцій (І) (АБО) і (НІ).
Задача полягає в наступному: чи можна призначити усім змінним, що трапляються у формулі, значення хибність і істина так, щоб формула стала істинною.
Щоб чітко сформулювати задачу розпізнавання, необхідно домовитися про алфавіт, за допомогою якого задаються екземпляри мови. Цей алфавіт має бути фіксованим і скінченним. У своїй книзі Гопкрофт, Мотвані і Ульман запропонували застосувати наступний алфавіт: {"", «», «», «», «», «», «», «»}.
При застосуванні такого алфавіту дужки й оператори записуються природним чином, а змінні отримують такі назви: x1, x10, x11, x100 і т. д., згідно з їх номерами, записаними в двійковій системі числення.
Нехай деяка булева формула, записана в звичайній математичній нотації, має довжину символів. У ній кожне входження кожної змінної описано хоча б одним символом, отже, всього в цій формулі не більше змінних. Значить, у запропонованій вище нотації кожна змінна буде записана за допомогою символів. У такому разі, вся формула в новій нотації матиме довжину символів, тобто довжина рядка зросте в поліноміальну кількість разів.
Наприклад, формула набуде вигляду .
Обчислювальна складність
У 1971-му році в статті Стівена Кука був уперше введений термін «NP-повна задача», і задача SAT була першою задачею, для якої доводилася ця властивість.
У доказі теореми Кука кожна задача з класу NP в явному виді зводиться до SAT. Після появи результатів, Кук довів NP-повноту для багатьох інших задач. При цьому найчастіше для доказу NP-повноти деякої задачі наводиться поліноміальне зведення задачі SAT до цієї задачі, можливо, в декілька кроків, тобто, з використанням кількох проміжних задач.
Окремі випадки задачі SAT
Цікавими окремими випадками задачі SAT є:
Задача здійсненності булевих формул у кон'юнктивній нормальній формі (SATCNF) — аналогічна задача, з накладеною на формулу умовою: вона має бути записана в кон'юнктивній нормальній формі.
Задача здійсненності булевих формул у k-кон'юнктивній нормальній формі (k-SAT) — задача здійсненності за умови, що формула записана в k-кон'юнктивній нормальній формі. Ця задача є NP-повною при .
Задача здійсненності булевих формул у 2-кон'юнктивній нормальній формі має поліноміальний розв'язок, тобто належить класу P.