Едвард Раус

Едвард Раус
англ. Edward John Routh
Народився20 січня 1831(1831-01-20)[1][2][3]
Квебек, Квебек, Канада
Помер7 червня 1907(1907-06-07)[1][2][3] (76 років)
Кембридж, Англія, Сполучене Королівство
Місце проживанняСполучене Королівство
Країна Сполучене Королівство
Діяльністьматематик
Alma materКоледж св. Петра
Університетський коледж Лондона
Кембриджський університет[4]
ЗакладКембриджський університет
Науковий керівникВільям Гопкінс[4] і Айзек Тодгантерd[5]
Аспіранти, докторантиJohn Hopkinsond
Джон Вільям Стретт[6]
Альфред Норт Вайтгед[7]
Вільям Генрі Брегг[8]
Джордж Дарвін[9]
Robert Rumsey Webbd[4]
ЧленствоЛондонське королівське товариство
БатькоRandolph Routhd
Нагороди

Едвард Джон Ра́ус (прізвище може транскрибуватись як Роус або Раут, англ. Edward John Routh; 20 січня 1831, Квебек — 7 червня 1907, Кембридж) — англійський механік і математик, член Лондонського королівського товариства (1872)[10][11]. Він також багато зробив для систематизації математичних методів теоретичної механіки і висунув низку ідей, що мають вирішальне значення для розвитку сучасної теорії керування.

Біографія

Едвард Джон Раус народився в канадському місті Квебек, де у той час перебував його батько сер Рендольф Ішем Раус (англ. Randolph Isham Routh; 1782—1858), який прослужив у британській армії 37 років. Батько брав участь у битві під Ватерлоо; у 1826 році став комісар-генералом. Мати Рауса — франко-канадка Марі Луїза Ташро (англ. Marie Louise Taschereau; 1810—1891)[10] — була сестрою майбутнього кардинала і Архієпископа Квебекського Е.-А. Ташро[en]. У 1842 році сім'я перебралась до Англії та оселилась у Лондоні[12].

У 1847—1849 роках Раус навчався в Лондонському Університетському коледжі і після його закінчення отримав ступінь бакалавра; тоді ж (завдяки впливу А. де Моргана, під керівництвом якого Раус вивчав математику) він вирішив зробити кар'єру математика. У 1850—1854 роках Е. Дж. Раус продовжив своє навчання у Кембриджському університеті, де здобув ступінь магістра[10]. При цьому на випускному екзамені (трайпос) з математики Раус посів перше місце (другим був Дж. К. Максвелл; за рішенням екзаменаційної комісії престижний Приз Сміта було розділено між ними порівну — перший випадок в історії призу)[10][13].

З 1855 до 1888 року Раус викладає математику в Кембриджському університеті, професор; у 1888 році покинув викладання і займався лише дослідницькою роботою[11].

31 серпня 1864 року Раус одружився з Гільдою Ейрі (англ. Hilda Airy; 1840—1916), старшою донькою англійського астронома і механіка Джорджа Бідделла Ейрі, директора Гринвіцької обсерваторії. У них було п'ятеро синів і дочка[14].

У Кембриджі Раус проявив себе як блискучий педагог; за час роботи в університеті він працював приблизно із 700 учнями, багато з яких пізніше успішно займалися науково-дослідною роботою (серед них — такі великі вчені, як Дж. В. Релей, Дж. Г. Дарвін, Дж. Дж. Томсон, Дж. Лармор, А. Н. Вайтгед). З приводу педагогічних талантів Рауса розповідали історію про те, що один зі студентів, які вивчали гідродинаміку, ніяк не міг зрозуміти, як хоч що-небудь може плавати; після роз'яснень Рауса студент пішов і тепер уже не розумів, як хоч що-небудь може потонути[10].

У 1854 році Раус був обраний членом Кембриджського філософського товариства; в 1856 році він став одним із засновників Лондонського математичного товариства. Був також обраний членом Королівського астрономічного товариства (1866) і Лондонського королівського товариства (1872)[10].

Багато своїх наукових результатів, отриманих в ході вирішення різних задач механіки, Раус включив в свій трактат «Трактат про динаміку системи твердих тіл» (англ. «An elementary treatise on the dynamics of a system of rigid bodies»), що вийшов першим виданням у 1860 році, а при наступних виданнях збільшив обсяг до двох томів. Трактат став класичним твором з теоретичної механіки і характеризувався А. Зоммерфельдом як «колекція задач, унікальна за своїм різноманіттям та багатством»[15]; трактат не раз перевидавався у Великій Британії та перекладався іншими мовами[11].

7 червня 1907 року Раус помер й був похований у Черрі Гілтон біля Кембриджа[16].

Наукова діяльність

Основні дослідження Е. Дж. Рауса належать до теорії стійкості руху, аналітичної механіки та динаміки твердого тіла. Займався також й іншими питаннями математики і механіки (зокрема, досліджував динаміку нитки)[11].

Теорія стійкості

У 1875 році Раус розв'язав задачу Максвелла, яку той сформулював у 1868 році на засіданні Лондонського математичного товариства[17]: знайти зручний для практичного застосування критерій стійкості многочлена довільного степеня з дійсними коефіцієнтами (стійким многочленом називається[18] такий многочлен, у якого дійсні частини усіх коренів є від'ємними). Раус запропонував алгоритм (алгоритм Рауса), що передбачає побудову за коефіцієнтами многочлена деякої таблиці (схема Рауса) і дозволяє за допомогою простих арифметичних операцій за скінченне число кроків з'ясувати, чи буде конкретний многочлен стійким чи ні[19].

Слід зазначити, що у 1895 році А. Гурвіц встановив інший (еквівалентний) критерій стійкості многочлена з дійсними коефіцієнтами — критерій Гурвіца (часто його називають[20] критерієм Рауса — Гурвіца), що зводиться до умови додатності деяких визначників, складених з коефіцієнтів многочлена. Практика показала, що для вияснення стійкості конкретного многочлена (з числовими коефіцієнтами) є зручнішим алгоритм Рауса, а при вивченні стійкості многочленів записаних у загальному виді ефективнішим є критерій Гурвіца[21].

Значний внесок зробив Раус у розвиток теорії стійкості руху. Якщо стійкість положень рівноваги механічних систем розглядалась ще Лагранжем, а стійкість планетних рухів — П.-С. Лапласом та С.-Д. Пуассоном, то Е. Дж. Раус і М. Є. Жуковський у 70-80-х роках XIX століття завершили розвиток класичної теорії стійкості за першим наближенням[22] і добились перших значних успіхів при вивченні стійкості руху у загальній постановці[23].

При цьому погляди Рауса («Трактат про стійкість заданого стану руху», 1877) і Жуковського (1882) відрізнялися у самому визначенні поняття стійкості руху: у Жуковського у визначенні стійкості руху йшлося про стійкість траєкторій точок механічної системи, а Раус називав рух стійким, якщо збурення, що були в початковий момент часу малими, продовжували бути малими і при подальшому русі; проте поняття про малість збурень у нього (як і у Жуковського) залишається нечітким[24]. Строге і загальне визначення стійкості руху було сформульоване згодом О. М. Ляпуновим[25].

Аналітична механіка

У 1876 році Раус розробив метод виключення циклічних координат з рівнянь руху механічних систем[26] і у зв'язку з цим запропонував[27] новий різновид рівнянь руху систем з ідеальними двосторонніми голономними в'язями — рівняння Рауса, що отримало різноманітні застосування в аналітичній механіці. Їх складання передбачає розділення узагальнених координат на дві групи; рівняння Рауса мають для координат однієї з цих груп лагранжеву, а для координат другої групи — гамільтонову форму[28][29]. Процедура складання рівнянь Рауса для конкретної системи починається із знаходження явного виду уведеної Раусом функції, котру він сам називав[30] «видозміненою функцією Лагранжа» і яку згодом стали називати «функцією Рауса»[31].

Метод виключення циклічних координат був застосований Раусом, зокрема, при дослідженні стаціонарних рухів консервативних систем з циклічними координатами — рухів, при яких залишаються постійними циклічні швидкості і позиційні (тобто не циклічні) координати. В рамках цього дослідження була доведена теорема Рауса: якщо у стаціонарному русі наведена потенційна енергія системи (потенціал Рауса) має строгий локальний мінімум, то даний рух є стійким відносно позиційних координат і швидкостей[32].

У 1877 році Раус, обговорюючи можливість застосування рівнянь Лагранжа до неголономних систем, запропонував модифікувати дані рівняння шляхом введення у їх праві частини доданків з невизначеними множниками (число яких дорівнює кількості додатково накладених в'язей)[33].

Динаміка твердого тіла

Раусу належить розв'язання багатьох задач динаміки абсолютно твердого тіла і систем твердих тіл. Велику увагу Раус приділяв задачам теорії удару, і в його працях було розроблено[34] загальну теорію співударяння твердих тіл. При цьому Раус розглядає співударяння не лише абсолютно гладких, але й шорстких тіл (коли має місце ударне тертя); узагальнюючи експериментальні дані А. Морена, він формулює[35] положення про те, що відношення дотичної і нормальної складових ударного імпульсу — таке ж, як і співвідношення дотичної і нормальної складових реакцій в'язі за умов сухого тертя, тобто збігається з коефіцієнтом тертя (це положення тепер відоме[36] як гіпотеза Рауса). Раусу належить і поширення рівнянь Лагранжа другого роду на системи з ударними силами[37].

Див. також

Примітки

  1. а б Bibliothèque nationale de France BNF: платформа відкритих даних — 2011.
  2. а б Архів історії математики Мактьютор — 1994.
  3. а б SNAC — 2010.
  4. а б в Математичний генеалогічний проєкт — 1997.
  5. Математичний генеалогічний проєкт — 1997.
  6. Математичний генеалогічний проєкт — 1997.
  7. Математичний генеалогічний проєкт — 1997.
  8. Математичний генеалогічний проєкт — 1997.
  9. Математичний генеалогічний проєкт — 1997.
  10. а б в г д е Джон Дж. О'Коннор та Едмунд Ф. Робертсон. Едвард Раус в архіві MacTutor (англ.)
  11. а б в г Боголюбов, 1983, с. 418.
  12. Буров, 2006, с. 128.
  13. Буров, 2006, с. 129.
  14. Буров, 2006, с. 130.
  15. Буров, 2006, с. 131—132.
  16. Буров, 2006, с. 132.
  17. Постников, 1981, с. 15—16.
  18. Постников, 1981, с. 12.
  19. Постников, 1981, с. 83.
  20. Маркеев, 1990, с. 384.
  21. Постников, 1981, с. 87.
  22. Тюлина, 1979, с. 185.
  23. Погребысский, 1964, с. 303–304.
  24. Кильчевский, 1977, с. 323—325.
  25. Кильчевский, 1977, с. 327.
  26. Голубев, 2000, с. 564.
  27. Петкевич, 1981, с. 358—359.
  28. Журавлёв, 2001, с. 127.
  29. Кильчевский, 1977, с. 349—350.
  30. Раус, т. I, 1983, с. 361.
  31. Голубев, 2000, с. 565.
  32. Маркеев, 1990, с. 352—353.
  33. Раус, т. I, 1983, с. 367—369.
  34. Кильчевский, 1977, с. 475.
  35. Раус, т. I, 1983, с. 164.
  36. Журавлёв, Фуфаев, 1993, с. 74—75.
  37. Раус, т. I, 1983, с. 343—345.

Публікації

  • Routh E. . A treatise of a stability of a given state of motion. — London : MacMillan, 1877.
  • Раус, Э. Дж. . Динамика системы твёрдых тел. Т. I. — М. : Наука, 1983. — 464 с.
  • Раус, Э. Дж. . Динамика системы твёрдых тел. Т. II. — М. : Наука, 1983. — 544 с.

Джерела

  • Боголюбов А. Н. . Математики. Механики. Биографический справочник. — К. : Наукова думка, 1983. — 639 с.
  • Буров А. А. . Эдвард Джон Раус // Сборник научно-методических статей. Теоретическая механика. Вып. 26. — М. : Изд-во Моск. ун-та, 2006. — 180 с. — ISBN 5-211-04992-6. — С. 128—133.
  • Голубев Ю. Ф. Основы теоретической механики. 2-е изд. — М. : Изд-во Моск. ун-та, 2000. — 719 с. — ISBN 5-211-04244-1.
  • Журавлёв В. Ф. Основы теоретической механики. 2-е изд. — М. : Физматлит, 2001. — 320 с. — ISBN 5-94052-041-3.
  • Журавлёв В. Ф., Фуфаев Н. А. . Механика систем с неудерживающими связями. — М. : Наука, 1993. — 240 с. — ISBN 5-02-006784-9.
  • Кильчевский Н. А. . Курс теоретической механики. Т. II. — М. : Наука, 1977. — 544 с.
  • Маркеев А. П. Теоретическая механика. — М. : Наука, 1990. — 416 с. — ISBN 5-02-014016-3.
  • Петкевич В. В. Теоретическая механика. — М. : Наука, 1981. — 496 с.
  • Погребысский И. Б. От Лагранжа к Эйнштейну: Классическая механика XIX века. — М. : Наука, 1964. — 327 с.
  • Постников М. М. Устойчивые многочлены. — М. : Наука, 1981.
  • Тюлина И. А. История и методология механики. — М. : Изд-во Моск. ун-та, 1979. — 282 с.

Посилання

  • O'Connor J. J., Robertson E. F.  Edward John Routh. — Матеріали архіву MacTutor. Архів оригіналу за 22 серпня 2016. Процитовано 18 листопада 2014.