SLinCA@Home (Scaling Laws in Cluster Aggregation — Інваріантність щодо масштабу|Масштабоінваріантні закономірності в агрегації кластерів) — це науково-дослідний проект, який використовує комп'ютери, з'єднані глобальною мережею Інтернет, для досліджень в галузі матеріалознавства.
Зараз SLinCA@Home має статус альфа-версії, що пов'язано з поступовою модернізацією серверної і клієнтської частин.
За неофіційною статистикою BOINCstats [Архівовано 8 липня 2011 у Wayback Machine.] (станом на 16 березня 2011) більш ніж 2000 волонтерів з 39 країн взяли участь у проекті, зробивши його другим за популярністю BOINC проектом в Україні (після проекту Magnetism@Home [Архівовано 3 червня 2011 у Wayback Machine.], який зараз не активний).[1] Близько 700 активних користувачів забезпечують приблизно 0.5-1.5 TFLOPS[2] обчислювальної потужності, яка дозволила б SLinCA@Home потрапити в найкращу 20-ку списку TOP500 [Архівовано 12 грудня 1998 у Wayback Machine.] суперкомп'ютерів … станом на червень 2005 року.[3] :)
Проект SLinCA@Home був створений для пошуку невідомих раніше масштабоінваріантних закономірностей за результатами експериментів і моделювання в наступних наукових програмах
SLinCA (Scaling Laws in Cluster Aggregation) є першою програмою портованою на DG інфраструктуру лабораторією фізики деформаційних процесів ІМФ [Архівовано 3 березня 2022 у Wayback Machine.] НАН України. Її метою є знайти закони масштабної інваріантності в кінетичному сценарії агрегації мономеру в кластерах різних видів і в різних наукових областях.
Процеси агрегаціїкластерів досліджуються в багатьох галузях науки: агрегації дефектів в матеріалознавстві, динаміці популяцій в біології, рості і розвитку міст в соціології, і т. д. Існуючі експериментальні дані свідчать про наявність ієрархічної структури на багатьох масштабних рівнях. Наявні теорії пропонують безліч сценаріїв агрегації кластерів, формування ієрархічних структур, і пояснення їх масштабоінваріантних властивостей. Для їх перевірки необхідно використовувати потужні обчислювальні ресурси для обробки величезних баз даних експериментальних результатів. Звичайне моделювання одного процесу агрегаціїкластерів з 106 мономерами займає приблизно 1-7 днів на одному сучасному процесорі, в залежності від кількості кроків у методі Монте-Карло.
Виконання SLinCA в Гріді в інфраструктурі розподілених обчислень (ІРО), дозволяє використовувати сотні машин з достатньою обчислювальною потужністю для моделювання безлічі сценаріїв за набагато більш короткі терміни.
Оптична мікроскопія зазвичай використовується для аналізу структурних характеристик матеріалів у вузьких діапазонах збільшення, невеликої досліджуваної області, і в статичному режимі. Однак безліч критичних процесів, пов'язаних з початком і динамічним поширенням руйнування спостерігаються в широкому часовому діапазоні від 10 −3с до 10 3с і на багатьох масштабних рівнях від 10 −6м (одиночні дефекти) до 10 −2м (пов'язані мережі дефектів). Програма Multiscale Image and Video Processing (MultiscaleIVideoP) призначена для обробки записаної еволюції матеріалів під час механічної деформації на випробувальній машині. Розрахунки включають в себе безліч параметрів фізичного процесу (швидкість, зусилля, збільшення, умови освітлення, апаратні фільтри, і т. д.) і параметрів обробки зображення (розподіл за розмірами, анізотропія, локалізація, параметри масштабування і т. д.). Тому розрахунки дуже трудомісткі і виконуються дуже повільно. Ось чому з'явилася крайня необхідність використання потужніших обчислювальних ресурсів. Виконання цієї програми в інфраструктурі розподілених обчислень (ІРО), дозволяє використовувати сотні машин з достатньою обчислювальною потужністю для обробки зображень і відео в більш широкому діапазоні масштабів і за набагато більш короткі терміни.
У січні, 2011 були отримані і опубліковані подальші результати обробки даних відеоспостереження в ході експериментів з циклічним обмеженим навантаженням алюмінієвої фольги.[6]
Плани на майбутнє
Поточна версія програми MultiScaleIVideoP буде оновлена для стабільності чекпоінта, нової функціональності та підтримки NVIDIA GPU-розрахунків для виконання аналізу швидше (за оцінками від 300 до 600 % швидше).
City Population Dynamics and Sustainable Growth (CPDynSG)
Відомо, що зростання міст (муніципалітетів, округів тощо) пояснюється міграцією, злиттям, зростанням населення і т. д. Відмічено, що розподіл міст за їх розмірами в багатьох країнах підпорядковується статичному закону. Ця залежність підтверджується даними для популяцій в різних містах в період їх початкової історії. Населення у всіх великих містах зростає набагато швидше, ніж країна в цілому за значний діапазон часу. Однак, як і в містах, які досягли зрілості, їх зростання може сповільнитися або кількість населення може навіть знизитися з причин, не пов'язаних з міграцією в ще більші міста. Різні теорії дають темпи зростання, асимптотики, і розподілу таких груп населення. Важливою особливістю програми є порівняння наявних теорій з даними спостережень та прогнозування сценаріїв динаміки стійкого зростання населення для різних національних і міжнародних регіонів. Програма City Population Dynamics and Sustainable Growth (CPDynSG) дозволяє дослідити зв'язок між величезним обсягом експериментальних даних і знайти якісну відповідність між передбаченнями різних моделей і наявними історичними даними.
Поточна версія програми CPDynSG буде оновлена для стабільності чекпоінта, нової функціональності та підтримки NVIDIA GPU-розрахунків для виконання аналізу швидше (за оцінками від 50 до 200 % швидше).
Поточна версія LAMMPS із застосуванням програми ІРО буде оновлена для стабільності чекпоінта, нової функціональності та підтримки NVIDIA GPU-розрахунків для виконання аналізу швидше (за оцінками від 300 до 500 % швидше).