II. Selâmet Giray
|
Read other articles:
Clarias Periode Lower Pliocene - recent Clarias batrachusTaksonomiKerajaanAnimaliaFilumChordataKelasActinopteriOrdoSiluriformesFamiliClariidaeGenusClarias Scopoli, 1777 Tata namaSinonim takson Chlarias Scopoli, 1777 Macropteronotus La Cepède, 1803 Clarias Cuvier, 1816 Cossyphus M’Clelland, 1844 Phagorus M’Clelland, 1844 Dinotopteroides Fowler, 1930 Prophagorus Smith, 1939 Anguilloclarias Teugels, 1982 Brevicephaloides Teugels, 1982 Clarioides Teugels, 1982 Platycephaloides Teugels, 1982 ...
مدرسة ليفربول لطب المناطق الحارة معلومات التأسيس 1898 الموقع الجغرافي إحداثيات 53°24′31″N 2°58′12″W / 53.4086°N 2.9699°W / 53.4086; -2.9699 المكان ليفربول البلد المملكة المتحدة إحصاءات عدد الموظفين 650 (2020)667 (2019)634 (2018)508 (2017)490 (2016) عضوية أورسيد [لغات أخرى] (أك...
Video game music track MegalovaniaBoss fight against Dr. Andonuts in the Radiation Halloween Hack, where Megalovania was first heardSong by Toby Fox fromthe romhack Radiation Halloween HackReleasedNovember 2008 (2008-11)[1]GenreVideo game musicLength1:59Composer(s)Toby FoxAlternate renditions Homestuck (2011, as MeGaLoVania)[2] Undertale (2015)[3] Super Smash Bros. Ultimate (2019)[4] Audio sampleBeginning of Megalovania in Undertalefilehelp Megalovani...
InformationWeekVP, Editor In ChiefRob PrestonKategoriTechnology B2BFrekuensiBulananSirkulasi220,000PenerbitUBM TechTerbitan pertama1979PerusahaanUBM LLCNegaraAmerika SerikatBerpusat diSan Francisco, CaliforniaSitus webwww.informationweek.comISSN8750-6874 InformationWeek adalah sumber daya informasi yang tersedia secara online di www.informationweek.com, dengan menerbitkan majalah digital, menyelenggarakan peristiwa virtual berhadapan, dan riset teknologi. IW berkantor pusat di San Francisco, ...
Tom KennyLahirThomas James Kenny13 Juli 1962 (umur 61)Syracuse, New York, A.S.PekerjaanAktor, KomedianTahun aktif1989–sekarangSuami/istriJill Talley (m. 1995)Anak2 Thomas James Kenny (lahir 13 Juli 1962) adalah seorang aktor dan komedian Amerika. Dia dikenal karena menyuarakan karakter eponim dalam SpongeBob SquarePants Serial TV, video game, dan film. Kenny telah mengisi suara banyak karakter lain termasuk Heffer Wolfe di Rocko's Modern Life; Ice K...
Elected politician in Jakarta, Indonesia Governor of the Special Capital Region of JakartaGubernur Daerah Khusus Ibukota JakartaCoat of arms of JakartaIncumbentHeru Budi HartonoActing since 17 October 2022ResidenceOffice House of the Governor of the Special Capital Region of Jakarta, Menteng, Central JakartaTerm lengthFive years, renewable onceInaugural holderSuwiryoFormation23 September 1945; 78 years ago (1945-09-23)(as Mayor of Jakarta)DeputyVice GovernorWebsite...
Asosiasi Sepak Bola TiongkokAFCDidirikan 1924 (sebagai mantan Republik Tiongkok) 1955 (sebagai Republik Rakyat Tiongkok)[1] Bergabung dengan FIFA1931Bergabung dengan AFC1974Bergabung dengan EAFF2002PresidenSong KaiWebsitewww.thecfa.cn Asosiasi Sepak Bola Tiongkok Hanzi sederhana: 中国足球协会 Hanzi tradisional: 中國足球協會 Alih aksara Mandarin - Hanyu Pinyin: Zhōngguó Zúqiú Xiéhuì - Wade-Giles: Chungkuo Tsuch'iu Hsieh-hui Asosiasi Sepak Bola Republik Rakyat Tiongkok...
The following is a list of Christian hardcore bands, organized alphabetically. Christian hardcore is a subgenre of hardcore punk primarily distinguished by its lyrical focus on Christian themes and values, although former Burden of a Day guitarist Bryan Honhart has suggested that the genre also possesses sonic distinctions.[1] Bands such as The Crucified, Focused, Focal Point, Zao and No Innocent Victim are considered progenitors of the movement.[2] In recent years, Demon Hun...
هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...
American politician and businessman (born 1945) David ScottRanking Member of the House Agriculture CommitteeIncumbentAssumed office January 3, 2023Preceded byGlenn ThompsonChair of the House Agriculture CommitteeIn officeJanuary 3, 2021 – January 3, 2023Preceded byCollin PetersonSucceeded byGlenn ThompsonMember of the U.S. House of Representativesfrom Georgia's 13th districtIncumbentAssumed office January 3, 2003Preceded byConstituency establishedMember of the G...
Japanese manga series by Hajime Kōmoto Mashle: Magic and MusclesFirst tankōbon volume cover, featuring Mash Burnedeadマッシュル-MASHLE-(Masshuru)GenreAdventure[1]Comic fantasy[2] MangaWritten byHajime KōmotoPublished byShueishaEnglish publisherNA: Viz MediaImprintJump ComicsMagazineWeekly Shōnen JumpDemographicShōnenOriginal runJanuary 27, 2020 – July 3, 2023Volumes18 (List of volumes) Anime television seriesDirected byTomoya TanakaProduced bySo...
Vol Iran Air 655 Un Airbus A300 d'Iran Air, semblable à celui impliqué dans l'accident Caractéristiques de l'accident Date3 juillet 1988 TypeDésintégration en vol CausesAbattu par un missile mer-air SiteGolfe Persique Coordonnées 26° 40′ 06″ nord, 56° 02′ 41″ est Caractéristiques de l'appareil Type d'appareilAirbus A300B2-200 CompagnieIran Air No d'identificationEP-IBU Lieu d'origineAéroport international Mehrabad, Téhéran, Iran Lieu de...
本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...
لمعانٍ أخرى، طالع دكالة (توضيح).تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. دُكَّالة معلومات القبيلة البلد المغر�...
1984 studio album by Nik Kershaw The RiddleStudio album by Nik KershawReleased19 November 1984 (1984-11-19)Recorded1984StudioSarm East (London) Sarm West (London)Genre Synth-pop[1][2] jazz[2] Length42:32LabelMCAProducerPeter CollinsNik Kershaw chronology Human Racing(1984) The Riddle(1984) Radio Musicola(1986) Singles from The Riddle The RiddleReleased: November 1984 Wide BoyReleased: March 1985 Don QuixoteReleased: July 1985[3] Professional ...
Alpine skiingat the XIII Olympic Winter GamesVenueWhiteface MountainWilmington, New YorkDatesFebruary 14–23, 1980No. of events6Competitors174 from 30 nations← 19761984 → Alpine skiing at the1980 Winter OlympicsDownhillmenwomenGiant slalommenwomenSlalommenwomenvte Lake Placid class=notpageimage| Location in the United States Whiteface MtnLake Placidclass=notpageimage| Locations in New York Alpine Skiing at the 1980 Winter Olympics consisted of six alpine...
Polo air padaPekan Olahraga Nasional XIX putra putri Nomor putri cabang olahraga Polo air pada Pekan Olahraga Nasional XIX, dimulai pada 21 September dan berakhir pada 26 September 2016. Pertandingan dilaksanakan di kolam renang Si Jalak Harupat, Sarana Olah Raga Si Jalak Harupat, Soreang, Kabupaten Bandung, Jawa Barat. Nomor polo air putri dipertandingkan untuk kedua kalinya di arena Pekan Olahraga Nasional setelah pekan olahraga nasional XVIII/2012 di Pekan Baru, Riau.[1...
Outlet mall in Merrimack, New Hampshire, United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Merrimack Premium Outlets – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this message) Merrimack Premium OutletsStores in June 2012LocationMerrimack, New Hampshir...
Punta CanaKoordinat: 18°32′N 068°22′W / 18.533°N 68.367°W / 18.533; -68.367NegaraRepublik DominikaProvinsiProvinsi La AltagraciaMunisipalitasHigüeyTerinkorporasi sebagai kota27 Juni 2006[1]Pemerintahan[2][3] • Wali Kota HigüeyRafael Barón Duluc (Blok Institusional Demokrat Sosial, 2020–2024) • Direktur Verón-Punta CanaRamón Antonio Ramírez (Partai Pembebasan Dominika, 2016–2024)Luas[4] •...
La transformée de Laplace d'une convolution est le produit des transformées de Laplace. En mathématiques, la transformation de Laplace est une transformation intégrale qui, à une fonction f — définie sur les réels positifs et à valeurs réelles —, associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuse...