U navigaciji, izračunavanje koordinata je proces izračunavanja nečijeg trenutnog položaja pomoću prethodno određenog položaja, ili fiksiranja, korišćenjem procena brzine i kursa tokom proteklog vremena. Odgovarajući termin u biologiji, koji se koristi za opisivanje procesa pomoću kojih životinje ažuriraju svoje procene položaja ili smera, jeste integracija putanje.
Izračunavanje koordinata je podložno akumulaciji grešaka. Napreci u navigacionim pomagalima koji daju tačne informacije o položaju, posebno satelitskoj navigaciji koja koristi globalni pozicioni sistem, pojednostavili su izračunavanja koordinata, tako da su tradicionalni proračuni zastareli za većinu svrha. Međutim, inercijalni navigacioni sistemi, koji pružaju vrlo tačne informacije o pravcu, koriste izračunavanje koordinata i veoma su široko zastupljeni.
Greške
Iako izračunavanje koordinata može pružiti najbolje dostupne informacije o trenutnom položaju sa malo matematike ili analize, ono je podložno značajnim greškama usled aproksimacija. Za precizne informacije o položaju, brzina i smer moraju biti tačno poznati u svakom trenutku tokom putovanja. Najvažnije je imati u vidu da izračunavanje koordinata ne uzima u obzir smerni pomak tokom putovanja kroz fluidni medijum. Ove greške imaju tendenciju da se sastavljaju na većim udaljenostima, čineći izračunavanje koordinata teškim metodom navigacije na dužim putovanjima.
Na primer, ako se pomeranje meri brojem rotacija točka, svako odstupanje između stvarne i pretpostavljene pređene udaljenosti po rotaciji, možda zbog klizanja ili nepravilnosti površine, biće izvor greške. Kako se svaka procena položaja vrši u odnosu na prethodnu, greške se vremenom akumuliraju ili slože.
Tačnost izračunavanje koordinata može se znatno povećati korišćenjem drugih pouzdanijih metoda za utvrđivanje novog fiksnog dela puta. Na primer, ako se neko kreće kopnom pri lošoj vidljivosti, tada se izračunavanje koordinata može koristiti za približavanje poznatom položaju orijentira da bi se mogao videti, pre nego što krene do samog orijentira - dajući tačno poznatu početnu tačku - i zatim se nastavlja put.
Lokalizacija mobilih sensorskih čvorova
Lokalizacija čvora statičkog senzora nije težak zadatak, jer je postavljanje GPS uređaja dovoljno za lokalizaciju. Međutim mobilni senzorski čvor, koji neprekidno menja svoj geografski položaj s vremenom, teško je lokalizovati. Uglavnom se mogu koristiti mobilni senzorski čvorovi unutar određenog domena za prikupljanje podataka, tj. senzorski čvor je priključen na životinju u polju za ispašu ili pričvršćen na vojnika na bojnom polju. Unutar ovih scenarija ne može se priuštiti GPS uređaj za svaki čvor senzora. Neki od razloga za to uključuju troškove, veličinu i utrošak baterije ograničenih senzorskih čvorova.
Da bi se rešio ovaj problem, koristi se ograničeni broj referentnih čvorova (sa GPS-om) u polju. Ovi čvorovi kontinuirano emituju svoje lokacije, a drugi čvorovi u blizini primaju te lokacije i izračunavaju svoj položaj pomoću neke od matematičkih tehnika, kao što je trilateracija. Za lokalizaciju su potrebne najmanje tri poznate referentne lokacije. U literaturi je predloženo nekoliko algoritama za lokalizaciju zasnovanih na sekvencijalnoj Monte karlovoj (SMC) metodi.[1][2] Ponekad čvor na nekim mestima primi samo dve poznate lokacije i zbog toga lokalizacija postaje nemoguća. Da bi se prevazišao ovaj problem, koristi se drugačiji pristup izračunavanja kordinata. Pri tome senzorski čvor koristi svoju prethodnu izračunatu lokaciju za lokalizaciju u kasnijim vremenskim intervalima.[3] Na primer, u trenutku 1, ako čvor A izračuna svoj položaj kao loca_1 uz pomoć tri poznate referentne lokacije; tada u trenutku 2 koristi loca_1 zajedno sa još dve referentne lokacije primljene od druga dva referentna čvora. Ovo ne samo da lokalizuje čvor za manje vremena, već se lokalizacija vrši na položajima na kojima je teško dobiti tri referentne lokacije.[4]
U studijama životinjske navigacije, izračunavanje koordinata je češće (iako ne isključivo) poznato kao integracija puta. Životinje je koriste za procenu trenutne lokacije na osnovu kretanja sa poslednje poznate lokacije. Pokazano je da životinje kao što su mravi, glodari i guske neprekidno prate svoje lokacije u odnosu na polaznu tačku i vraćaju se u nju, što je važna veština za tragače za hranom sa fiksnim domom.[5][6]
Pomorska navigacija
U pomorskoj plovidbi izračunavanje koordinata generalno ne uzima u obzir uticaj struja ili vetra. Na brodu se grafik izračunavanja koordinata smatra važnom u proceni informacija o položaju i planiranju kretanja plovila.[7]
Autonomna navigacija u robotici
Izračunavanje koordinata se koristi u pojedinim robotskim aplikacijama.[8] Ono se obično koristi za smanjenje potrebe za senzorskom tehnologijom, kao što su ultrazvučni senzori, GPS ili postavljanje nekih linearnih i rotacionih enkodera, u autonomni robot, čime se u velikoj meri smanjuju troškovi i složenost na štetu performansi i ponovljivosti. Pravilno korišćenje izračunavanja koordinata u ovom smislu bi bilo isporučivanje poznatog procenta električne snage ili hidrauličkog pritiska pogonskim motorima robota tokom datog vremena od opšte polazne tačke. Izračunavanje koordinata nije potpuno tačno, što može dovesti do grešaka u procenama udaljenosti u rasponu od nekoliko milimetara (u CNC obradi) do kilometara (u UAV uređajima), na osnovu trajanja vožnje, brzine robota, dužine puta, i nekoliko drugih faktora.
Reference
^Hu, Lingxuan; Evans, David (2004-01-01). „Localization for mobile sensor networks”. Proceedings of the 10th annual international conference on Mobile computing and networking. MobiCom '04. New York, NY, USA: ACM. стр. 45—57. CiteSeerX10.1.1.645.3886. ISBN978-1-58113-868-9. doi:10.1145/1023720.1023726.
^Rashid, Haroon; Turuk, Ashok Kumar (2015). „Dead reckoning localisation technique for mobile wireless sensor networks”. Iet Wireless Sensor Systems. 5 (2): 87—96. arXiv:1504.06797. doi:10.1049/iet-wss.2014.0043.
^Turuk, Haroon (2015). „IET Digital Library: Dead reckoning localisation technique for mobile wireless sensor networks”. IET Wireless Sensor Systems. 5 (2): 87—96. arXiv:1504.06797. doi:10.1049/iet-wss.2014.0043.
Tinbergen, Nico (1984). Curious Naturalists (Revised изд.). University of Massachusetts Press.
von Frisch, Karl (1953). The Dancing Bees. Harcourt, Brace & World.
Gauthreaux, Sidney A. (1980). Animal Migration, Orientation, and Navigation. Academic Press.
Keeton, William (1972). Effects of magnets on pigeon homing.. pages 579–594 in Animal Orientation and Navigation. NASA SP-262.
Keeton, William (1977). Magnetic Reception. (biology). In Encyclopedia of Science and Technology, 2nd Ed. McGraw-Hill.
Keeton, William (1979). Pigeon Navigation.. pages 5–20 in Neural Mechanisms of Behavior in the Pigeon. (A. M. Granda and J. H. Maxwell, Eds.) Plenum Publishing.
Dacke, M.; Nordström, P.; Scholtz, C. H. (мај 2003). „Twilight orientation to polarised light in the crepuscular dung beetle Scarabaeus zambesianus”. Journal of Experimental Biology. 206 (9): 1535—1543. PMID12654892. doi:10.1242/jeb.00289.CS1 одржавање: Формат датума (веза)
Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H.; Warrant, Eric J. (2013). „Dung Beetles Use the Milky Way for Orientation”. Current Biology. 23 (4): 298—300. PMID23352694. doi:10.1016/j.cub.2012.12.034.