Read other articles:
Julian AshtonCBEPotret Ashton oleh George Washington Lambert, 1928, Galeri Seni New South WalesLahirJulian Rossi Ashton(1851-01-27)27 Januari 1851Addlestone, Surrey, InggrisMeninggal27 April 1942(1942-04-27) (umur 91)Templat:NSWcity, Sydney, New South Wales, AustraliaDikenal atasArt patron; teacher; landscape and portraitureJulian Ashton Art SchoolGerakan politikHeidelberg SchoolSuami/istriEliza Ann Pugh(m. 1876; d. 15 July 1900)(Constance) Irene Morley(m. 1902; d. 1946)ElectedTrustee, ...
This article is about the EP. For titular song, see How to Tame Lions (song). 2009 EP by WashingtonHow to Tame LionsEP by WashingtonReleasedSeptember 2009 (2009-09)LabelMercury, UniversalProducerJohn Castle, Megan WashingtonWashington chronology Clementine(2008) How to Tame Lions(2009) Rich Kids(2010) Singles from How to Tame Lions CementReleased: July 2009[1] How to Tame LionsReleased: October 2009[2] How to Tame Lions is the fourth extended play by Australi...
Турбина Теслы в Музее Николы Теслы Турбина Теслы. Чертёж из патента Турбина Теслы — безлопастная центростремительная турбина, запатентованная Николой Теслой в 1913 году. Её часто называют безлопастной турбиной, поскольку в ней используется эффект пограничного слоя, а не ...
Pusat kota Rutland Lokasi di Vermont County Rutland adalah sebuah county yang terletak di negara bagian Vermont, Amerika Serikat. Pada sensus tahun 2020, jumlah penduduknya adalah 60.572 jiwa,[1] menjadikannya county terpadat kedua di Vermont. Ibu kota dan kotamadya terpadatnya adalah kota Rutland.[2] Sejarah Selama Perang Revolusi terdapat sejumlah benteng dan jalan yang melewati daerah yang sekarang dikenal sebagai County Rutland. Di Castleton ada Benteng Warren dan kemungki...
Untuk kegunaan lain, lihat Salsa (disambiguasi). SalsaJenisSausTempat asalMeksikoSuhu penyajianDinginBahan utamaVariasiSunting kotak info • L • BBantuan penggunaan templat ini Media: Salsa Salsa adalah Bahasa Spanyol untuk saus, dan di negara berbasis bahasa Inggris selalu dirujuk dengan saus pedas dari Meksiko, terutama digunakan untuk saus celup. Ada berbagai macam saus yang biasanya berasal dari Amerika Latin.
Bupati Klungkung Republik IndonesiaBadge Bupati KlungkungPetahanaI Made Kasta (Plt.)sejak 3 November 2023Masa jabatan5 tahunDibentuk1686Pejabat pertamaIda I Dewa Agung JambeSitus webSitus Resmi Pemkab Klungkung Berikut adalah nama-nama Bupati Klungkung dari masa ke masa. No Foto Nama Mulai jabatan Akhir jabatan Wakil Bupati Keterangan Masa Kerajaan Klungkung (1686-1843) 1 Dewa Agung Jambe I 1686 1722 Tidak ada anak atau kerabat Dalem Di Made 2 Dewa Agung Made 1722 1736 anak Dewa Agung Ja...
International Airport in Sardinia, Italy Olbia Costa Smeralda AirportAeroporto di Olbia-Costa SmeraldaIATA: OLBICAO: LIEOSummaryAirport typePublicOwner/OperatorGeasar S.p.A.ServesOlbiaLocationOlbia, ItalyElevation AMSL37 ft / 11 mCoordinates40°53′09″N 09°31′01″E / 40.88583°N 9.51694°E / 40.88583; 9.51694Websitegeasar.itMapOLBLocation of airport in SardiniaShow map of SardiniaOLBOLB (Italy)Show map of ItalyRunways Direction Length Surface m ft...
この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...
Building in Holford, EnglandAlfoxton HouseAlfoxden Park (a 1920 book illustration)Location within SomersetGeneral informationTown or cityHolfordCountryEnglandCoordinates51°09′55″N 3°13′12″W / 51.1652°N 3.2201°W / 51.1652; -3.2201Completed1710ClientJohn St Albyn Alfoxton House, also known as Alfoxton Park or Alfoxden, is an 18th-century country house in Holford, Somerset, England, within the Quantock Hills Area of Outstanding Natural Beauty. The present hou...
Rural municipality in Saskatchewan, Canada Rural municipality in Saskatchewan, CanadaReno No. 51 RM of RenoRural municipalityRural Municipality of Reno No. 51RM office in ConsulConsulGovenlockSenateVidoraRobsartNashlynArenaWillow CreekOxaratLocation of the RM of Reno No. 51 in SaskatchewanCoordinates: 49°20′31″N 109°33′04″W / 49.342°N 109.551°W / 49.342; -109.551[1]CountryCanadaProvinceSaskatchewanCensus division4SARM division3Federal ridingCypress ...
Software anti-piracy campaign DCTF redirects here. For the football publication, see Dave Campbell's Texas Football. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Don't Copy That Floppy – news · newspapers · books · scholar · JSTOR (May 2008) (Learn how and when to remove this message) The Disk Protector s...
Anton Drexler Ketua DAPMasa jabatan5 Januari 1919 – 29 Juni 1921WakilKarl Harrer (1919-1920)PenggantiAdolf Hitler Informasi pribadiLahir(1884-06-13)13 Juni 1884Munich, JermanMeninggal24 Februari 1942(1942-02-24) (umur 57)Munich, JermanKebangsaanJermanPartai politikDAPNSDAPPekerjaanPolitikusSunting kotak info • L • B Anton Drexler (13 Juni 1884 – 24 Februari 1942) adalah seorang pemimpin politik kanan jauh Jerman pada 1920-an yang merupakan tokoh penting dalam p...
Sturmpanzer IVSd.Kfz. 166DescrizioneTipocannone d'assalto Equipaggio5 (comandante, cannoniere, 2 serventi, pilota) CostruttoreHeereszeugamt WienDeutsche Eisenwerke Data impostazione1942 Data entrata in servizio1943 Data ritiro dal servizio1945 Utilizzatore principale Germania Esemplari306 Sviluppato dalPanzer IV Altre variantiVedi nel testo Dimensioni e pesoLunghezza5,93 m Larghezza2,88 m Altezza2,52 m Peso28,2 t Capacità combustibile470 L Propulsione e tecnicaMotoreMaybach HL 120 ...
1926 novel by Grigol Robakidze The Snake's Skin AuthorGrigol RobakidzeOriginal titleგველის პერანგიTranslatorGrigol RobakidzeCountryGeorgiaLanguageGeorgianSubjectPatriotismGenre Modernist novelPhilosophical fictionMagic realismSet inGeorgia, Persia, EnglandPublishedTbilisiPublisherDiederich VerlagPublication date 1926, 1928 in GermanMedia typePrint (hardback)Pages409 pages The Snake's Skin (Das Schlangenhemd) (also referred as The Snake's Slough) is a n...
Pour les articles homonymes, voir Choc. Loi de mouvement présentant deux chocs : un choc de démarrage et un choc de freinage. La courbe de position n'est pas dérivable, la courbe de vitesse présente des discontinuités, et la courbe d'accélération des pics de Dirac. Un solide est modélisé par deux corps rigides reliés par un ressort. Initialement, le champ de vitesse est uniforme (image du haut). Une collision sur la partie gauche (image du bas) crée une discontinuité tempore...
Volo Merpati Nusantara Airlines 836Tipo di eventoIncidente Data13 aprile 2010 TipoUscita di pista causata da pessime condizioni meteorologiche LuogoAeroporto di Rendani, Manokwari Stato Indonesia Coordinate0°52′51″S 134°02′52″E0°52′51″S, 134°02′52″E Tipo di aeromobileBoeing 737-322 OperatoreMerpati Nusantara Airlines Numero di registrazionePK-MDE PartenzaAeroporto di Sorong, Sorong, Indonesia DestinazioneAeroporto di Rendani, Manokwari, Indonesia Occupanti110 Passegge...
Figure skating at the 2017 Asian Winter GamesVenueMakomanai Ice ArenaDates23–26 February 2017Competitors75 from 17 nations← 2011 Figure skating at the 2017 Asian Winter Games was held in Sapporo, Japan between 23–26 February at the Makomanai Ice Arena.[1] A total of four events were contested: men's and women's singles, pairs and ice dancing.[2] China finished first in medal table, winning two gold medals. Schedule S Short program F Free ska...
Unincorporated community in the Canadian province of Ontario Lee Valley Lee Valley is an unincorporated community in the Canadian province of Ontario. Located in the Sudbury District, the rural area is divided between the town of Espanola and the municipality of Sables-Spanish Rivers. Demographics In the 2021 Census of Population conducted by Statistics Canada, Lee Valley had a population of 242 living in 108 of its 111 total private dwellings, a change of -50.7% from its 2016 population of 4...
Fundamental operation on complex numbers Geometric representation (Argand diagram) of z {\displaystyle z} and its conjugate z ¯ {\displaystyle {\overline {z}}} in the complex plane. The complex conjugate is found by reflecting z {\displaystyle z} across the real axis. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are re...
Species of fungus Fusarium solani Scientific classification Domain: Eukaryota Kingdom: Fungi Division: Ascomycota Class: Sordariomycetes Order: Hypocreales Family: Nectriaceae Genus: Fusarium Species: F. solani Binomial name Fusarium solani(Mart.) Sacc. (1881) Synonyms Fusisporium solani Mart. (1842) Fusarium solani (Mart.) Appel & Wollenw. (1910) Neocosmospora solani (Martius) L. Lombard & Crous (2015) Fusarium martii Appel & Wollenw. (1910) Nectria cancri Rutgers (1913) Fus...