Хосе Рубен Руиз М. (Венустијано Каранза)
|
Read other articles:
Imprint of DC Comics This article is about the 2005 DC Comics imprint. For the 1940s comic book series, see All Star Comics. DC Comics All-Star imprint. All Star was an imprint of ongoing American comic book titles published by DC Comics that ran from 2005 to 2008. DC Comics has published two titles under the All Star banner, featuring Superman and Batman, and announced a number of titles featuring other heroes under the imprint that were never released. Overview The premise of the imprint wa...
Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Bagian dari seri tentangBuddhisme SejarahPenyebaran Sejarah Garis waktu Sidang Buddhis Jalur Sutra Benua Asia Tenggara Asia Timur Asia Tengah Timur Tengah Dunia Barat Australia Oseania Amerika Eropa Afrika Populasi signifikan Tiongkok Thailand Jepang Myanmar Sri Lanka Vietnam Kamboja Korea Taiwan India Malaysia Laos In...
Stasiun Manggarai merupakan salah satu stasiun KRL Commuter Line dan KAI Commuter Soekarno-Hatta paling sibuk dan ramai di Jakarta Selatan. Stasiun Pasar Senen merupakan stasiun KA antarkota dan KRL Commuter Line di Jakarta Pusat. New York City Subway adalah sistem angkutan cepat operator tunggal terbesar di dunia menurut jumlah stasiun metro, yaitu 472. Bagian dari seriPerkeretaapian Sejarah Perusahaan Prasarana Penyelenggara Emplasemen Rel Pemeliharaan Lebar sepur Lebar sepur variabel Konve...
Women's liberal arts college in U.S. Not to be confused with Wesleyan College or Wesleyan University. Wellesley CollegeLatin: Collegium WellesleianumFormer namesWellesley Female Seminary (1870–1873)MottoNon Ministrari sed Ministrare (Latin)Motto in EnglishNot to be ministered unto, but to minister[1]TypePrivate women's liberal arts collegeEstablished1870 (chartered)1875 (commenced classes)AccreditationNECHEAcademic affiliationsAICUMAnnapolis GroupCLACCOFHENAICU[2]Oberli...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Voice van Vlaanderen season 1 – news · newspapers · books · scholar · JSTOR (August 2013) (Learn how and when to remove this template message) The Voice van Vlaanderen is a Belgian reality talent show. The 1st season of the Flemish version premiered on...
العلاقات اليمنية البولندية اليمن بولندا اليمن بولندا تعديل مصدري - تعديل العلاقات اليمنية البولندية هي العلاقات الثنائية التي تجمع بين اليمن وبولندا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة اليمن ب...
Constituency of Bangladesh's Jatiya Sangsad Madaripur-1Constituencyfor the Jatiya SangsadDistrictMadaripur DistrictDivisionDhaka DivisionElectorate245,095 (2018)[1]Current constituencyCreated1984PartyAwami LeagueMember(s)Noor-E-Alam Chowdhury Liton Madaripur-1 is a constituency represented in the Jatiya Sangsad (National Parliament) of Bangladesh since 1991 by Noor-E-Alam Chowdhury Liton of the Awami League. Boundaries The constituency encompasses Shibchar Upazila.[2][3 ...
1922 film Saturday NightFilm posterDirected byCecil B. DeMilleWritten byJeanie MacPhersonScreenplay byJeanie MacPhersonStory byJeanie MacPhersonProduced byCecil B. DeMilleStarringLeatrice JoyConrad NagelEdith RobertsCinematographyKarl StrussAlvin WyckoffEdited byAnne BauchensProductioncompanyFamous Players–Lasky CorporationDistributed byParamount PicturesRelease date January 29, 1922 (1922-01-29) Running time9 reelsCountryUnited StatesLanguageSilent (English intertitles)Budge...
Defunct American telecommunications company This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: FairPoint Communications – news · newspapers · books · scholar · JSTOR (November 2014) (Learn how and when to remove this message) FairPoint Communications, Inc.Company typeSubsidiaryTraded asNasdaq: FRPIndustryC...
Pour les articles homonymes, voir Busche. Matthew BuscheMatthew Busche lors du Grand Prix cycliste de Montréal 2012InformationsNaissance 9 mai 1985 (38 ans)WauwatosaNationalité américaineSpécialité RouleurÉquipes amateurs 2008Nova Cycle01.2009-08.2009[n 1]NM IS CorpÉquipes professionnelles 08.2009-12.2009[n 2]Kelly Benefit Strategies2010-2011RadioShack2012RadioShack-Nissan2013RadioShack-Leopard2014-2015Trek Factory Racing2016UnitedHealthcarePrincipales victoires 2 championnats Ch...
土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...
此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...
Stryper adalah kelompok musik rock Kristen yang didirikan pada tahun 1983. Mereka sempat bubar pada akhir tahun 1990-an namun telah bergabung kembali pada tahun 2003. Diskografi The Yellow and Black Attack (1984, EP) Soldiers Under Command (1985) To Hell with the Devil (1986) In God We Trust (1988) Against the Law (1990) Can't Stop the Rock (1991, kompilasi) Seven: the Best of Stryper (2003, kompilasi) 7 Weeks: Live in America, 2003 (2004, live) Reborn (2005) Pengawasan otoritas Umum Integra...
International football awards The Best FIFA Football AwardsCurrent: The Best FIFA Football Awards 2023Awarded forExcellence in association football team and individual achievementsLocationZürich, SwitzerlandPresented byFIFAFirst awarded9 January 2017 (2017-01-09)Websitefifa.com/the-best-fifa-football-awards The Best FIFA Football Awards is a football award presented annually by the sport's governing body, FIFA.[1] The first awarding ceremony was held on 9 January 2017 ...
بنو لخم مناذرة اللخميون 300 – 602 خريطة للمدن العربية في زمن المناذرة مناطق نفوذ المناذرة في القرن السادس الميلاديمناطق نفوذ المناذرة في القرن السادس الميلادي عاصمة الحيرة نظام الحكم ملكية لغات مشتركة العربية الديانة المسيحية النسطورية (رسميا) [1] قلّة و...
Human settlement in EnglandSt Jude's, BristolThe former St Jude's parish church.Population2,755 [1]OS grid referenceST600736Unitary authorityBristolCeremonial countyBristolRegionSouth WestCountryEnglandSovereign stateUnited KingdomPost townBRISTOLPostcode districtBS5Dialling code0117PoliceAvon and SomersetFireAvonAmbulanceSouth Western UK ParliamentBristol West List of places UK England Bristol 51°27′38″N 2°34′37″W / ...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Dataran tinggi Gayo – berita · surat kabar · buku · cendekiawan · JSTOR Pemandangan Kota Takengon dari Pantan Terong Dataran Tinggi Gayo atau Tanah Gayo adalah daerah yang berada di salah satu bagian punggung...
Las referencias de este artículo no tienen un formato correcto. Puedes colaborar editándolas como se indica en esta página.También puedes avisar en su página de discusión a quien las añadió pegando lo siguiente: {{subst:Aviso formato de referencias|Andrés Hammersley}} ~~~~Este aviso fue puesto el 21 de agosto de 2024. Andrés Hammersley Hammersley en la portada de la revista El Gráfico (1942)Apodo El huasoPaís Chile ChileProfesional desde 1939Retiro 1972Perfil oficial ATP Per...
Cet article est une ébauche concernant les Palaos. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. État de Ngatpang Drapeau Carte de l’État de Ngatpang. Administration Pays Palaos Capitale Oikul Démographie Population 464 hab. (2005) Densité 9,9 hab./km2 Géographie Altitude Min. 0 m Superficie 4 700 ha = 47 km2 modifier Ngatpang est l'un des seize États qui ...
In matematica, in particolare in analisi complessa, si definisce funzione meromorfa su un sottoinsieme aperto D {\displaystyle {\mathcal {D}}} del piano complesso una funzione che è olomorfa su tutto D {\displaystyle {\mathcal {D}}} ad esclusione di un insieme di punti isolati che sono poli della funzione stessa. Ogni funzione meromorfa su D {\displaystyle {\mathcal {D}}} può essere espressa come rapporto di due funzioni olomorfe (con la funzione denominatore diversa dalla costante 0) defin...