Нуклеинске киселине су крупни и сложени органски молекули значајни за ћелију и одговорни за најзначајније процесе, као што су наслеђивање, синтеза протеина, у њој. Постоје два типа нуклеинских киселина: дезоксирибонуклеинска киселина и рибонуклеинска киселина. ДНК је носилац наследних информација у ћелији, док РНК учествују у преношењу тих информација и њиховом превођењу у протеине. Нуклеинске киселине су макромолекули чију јединицу грађе представљају нуклеотиди. Њих образује један пентознишећер за који је везана фосфатна група и једна азотна, пуринска или пиримидинска база. Нуклеотиди међусобно повезују и на тај начин, захваљујући вези која се успоставља између фосфата и шећера, формирају ланац. Осим у вирусима, који садрже једну или другу нуклеинску киселину (никада обе), ДНК и РНК се налазе у свим врстама организама. Нуклеинске киселине се највише налазе у једру (lat. nucleus) па су по томе и добиле назив. Први их је изоловао Фридрих Мишер 1872. године. Нешто касније установљено је да се, осим у једру, налазе и у цитоплазми. Према данашњим подацима познато је да засебне нуклеинске киселине садрже и неке од ћелијских органела, какве су нпр. митохондрије и хлоропласти. Према грађи су полимери изграђени од мономера - нуклеотида.
У изградњи нуклеотида, који формирају ДНК учествују:
пуринске (деривати пурина) базе аденин и гуанин, или приримидинске(деривати пиримидина) базе цитозин и урацили
киселински остатак фосфорне киселине.
Нуклеинске киселине су природна хемијска једињења која служе као примарни молекули који преносе информација у ћелијама и чине генетски материјал. Нуклеинских киселина има у изобиљу у свим живим бићима, где се стварају, кодирају, а затим чувају информације о свакој живој ћелији сваког облика живота на Земљи. Оне функционишу тако што преносе и изражавају те информације унутар и изван ћелијског језгра у унутрашњим операцијама ћелије и ултиматно у следећој генерацији сваког живог организма. Кодиране информације су садржане и преносе се путем секвенци нуклеинских киселина, што обезбеђује унутар молекула РНК и ДНК. Нуклеинске киселине играју посебно важну улогу у усмеравању синтезе протеина.
Нити нуклеотида су повезане да би формирале основу у виду хеликсне завојнице - обично једну за РНК, две за ДНК - и склопљене су у ланце парова база изабраних од пет примарних, односно канонских нуклеобаза, а то су: аденин, цитозин, гуанин, тимин, и урацил. Тимин се јавља само у ДНК, а урацил само у РНК. Користећи аминокиселине и поступак познат као синтеза протеина,[1] специфично секвенцирање у ДНК ових парова нуклеобазе омогућава чување и пренос кодираних упутстава као гена. У РНК, секвенцирање базних парова омогућава производњу нових протеина који одређују оквире и делове и већину хемијских процеса свих облика живота.
Термин нуклеинска киселина је свеукупан назив за ДНК и РНК, чланове породице биополимера,[9] и синоним је за полинуклеотид. Нуклеинске киселине су назване због свог почетног открића унутар једгра и због присуства фосфатних група (сродних фосфорној киселини).[10] Иако су први пут откривене у једгруеукариотских ћелија, сада је познато да се нуклеинске киселине могу наћи у свим облицима живота, укључујући бактерије, археје, митохондрије, хлоропласте и вирусе (постоји расправа да ли су вируси живи или неживи). Све живе ћелије садрже и ДНК и РНК (осим неких ћелија као што су зрела црвена крвна зрнца), док вируси садрже ДНК или РНК, али обично не обе.[11] Основна компонента биолошких нуклеинских киселина је нуклеотид, од којих сваки садржи пентозни шећер (рибозу или дезоксирибозу), фосфатну групу и нуклеобазу.[12] Нуклеинске киселине се такође генеришу у лабораторији, употребом ензима[13] (ДНК и РНК полимеразе) и хемијском синтезом у чврстој фази. Хемијске методе такође омогућавају стварање измењених нуклеинских киселина којих нема у природи,[14] на пример пептидних нуклеинских киселина.
Молекуларни састав и величина
Нуклеинске киселине су углавном веома велики молекули. Молекули ДНК су вероватно највећи познати индивидуални молекули. Добро проучени молекули биолошке нуклеинске киселине варирају у величини од 21 нуклеотида (мала интерферирајућа РНК) до великих хромозома (људски хромозом 1 је један молекул који садржи 247 милиона базних парова[15]).
У већини случајева молекули ДНК у природи су дволанчани, а молекули РНК једноланчани.[16] Постоје бројни изузеци - неки вируси имају геном направљен од дволанчане РНК, а други вируси имају једноланчане ДНК геноме,[17] и, у неким околностима, могу се формирати структуре нуклеинске киселине са три или четири ланца.[18]
Нуклеинске киселине су линеарни полимери (ланци) нуклеотида. Сваки нуклеотид се састоји од три компоненте: пуринске или пиримидинскенуклеобазе (понекад назване азотном базом или једноставно базом), пентозногшећера и фосфатне групе која молекул чини киселим. Подструктура која се састоји од нуклеобазе и шећера назива се нуклеозид. Типови нуклеинске киселине се разликују у структури шећера у својим нуклеотидима - ДНК садржи 2'-дезоксирибозу, док РНК садржи рибозу (где је једина разлика присуство хидроксилне групе). Такође, нуклеобазе пронађене у два типа нуклеинске киселине су различите: аденин, цитозин и гуанин налазе се у РНК и у ДНК, док се тимин јавља у ДНК, а урацил у РНК.
Шећери и фосфати у нуклеинским киселинама повезани су међусобно у наизменичном ланцу (основа од шећера и фосфата) преко фосфодиестерских веза.[19] У конвенционалној номенклатури, угљеници за које се вежу фосфатне групе су 3'-крај а 5'-крај угљеник је на шећеру. Ово даје усмереност нуклеинским киселинама, и крајеви молекула нуклеинске киселине називају се 5'-крај и 3'-крај. Нуклеобазе су повезане са шећерима преко N-гликозидне везе која укључује нуклеобазни прстен азота (N-1 за пиримидине и N-9 за пурине) и 1' угљеник у прстену пентозног шећера.
Нестандардни нуклеозиди су такође присутни у РНК и у ДНК и обично настају модификовањем стандардних нуклеозида унутар молекула ДНК или примарног (почетног) транскрипта РНК. Молекули транспортне РНК (тРНК) садрже нарочито велики број модификованих нуклеозида.[20]
^Dahm R (јануар 2008). „Discovering DNA: Friedrich Miescher and the early years of nucleic acid research”. Human Genetics. 122 (6): 565—81. PMID17901982. S2CID915930. doi:10.1007/s00439-007-0433-0.CS1 одржавање: Формат датума (веза)
^Cox, Michael; Nelson, David (2008). Principles of Biochemistry. Susan Winslow. стр. 288. ISBN9781464163074.
^„DNA Structure”. What is DNA. Linda Clarks. Архивирано из оригинала 24. 02. 2021. г. Приступљено 6. 8. 2016.CS1 одржавање: Формат датума (веза)
^Dahm R (јануар 2008). „Discovering DNA: Friedrich Miescher and the early years of nucleic acid research”. Human Genetics. nih.gov. 122 (6): 565—81. PMID17901982. S2CID915930. doi:10.1007/s00439-007-0433-0.CS1 одржавање: Формат датума (веза)
Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter (2007). Molecular Biology of the Cell. ISBN978-0-8153-4105-5.CS1 одржавање: Вишеструка имена: списак аутора (веза). Fourth edition is available online through the NCBI Bookshelf: link
Jeremy M Berg, John L Tymoczko, and Lubert Stryer, Biochemistry 5th edition, 2002, W H Freeman. Available online through the NCBI Bookshelf: link
Astrid Sigel; Helmut Sigel; Roland K. O. Sigel, ур. (2012). Interplay between Metal Ions and Nucleic Acids. Metal Ions in Life Sciences. 10. Springer. ISBN978-94-007-2171-5. doi:10.1007/978-94-007-2172-2.
Palou-Mir, Joana; Barceló-Oliver, Miquel; Sigel, Roland K.O. (2017). „Chapter 12. The Role of Lead(II) in Nucleic Acids”. Ур.: Astrid, S.; Helmut, S.; Sigel, R. K. O. Lead: Its Effects on Environment and Health. Metal Ions in Life Sciences. 17. de Gruyter. стр. 403—434. PMID28731305. doi:10.1515/9783110434330-012.