Share to: share facebook share twitter share wa share telegram print page

Турбореактивный двигатель

ТРД в разрезе:
1. Забор воздуха
2. Компрессор низкого давления
3. Компрессор высокого давления
4. Камера сгорания
5. Расширение рабочего тела в турбине и сопле
6. Горячая зона
7. Турбина
8. Зона входа первичного воздуха в камеру сгорания
9. Холодная зона
10. Входное устройство

Турбореактивный двигатель (здесь и далее — ТРД) — газотурбинный двигатель, в котором химическая энергия топлива преобразуется в кинетическую энергию струй газов, вытекающих из реактивного сопла.[1] Основная область применения — авиация. Механической основой любого ТРД всегда является турбокомпрессор.

История

В 1791 году английский изобретатель Джон Барбер предложил идею коловратного двигателя с поршневым компрессором, камерой сгорания и газовой турбиной. В 1909 году русский изобретатель Н. В. Герасимов запатентовал схему газотурбинного двигателя для создания реактивной тяги (турбореактивного двигателя)[2][3][4]. Патент на использование газовой турбины для движения самолёта получен в 1921 году французским инженером Максимом Гийомом[фр.].

Первый образец турбореактивного двигателя продемонстрировал английский инженер Фрэнк Уиттл 12 апреля 1937 года и созданная им небольшая частная фирма Power Jets[англ.]. Он основывался на теоретических работах Алана Гриффита[англ.].

Первое полезное применение турбореактивного двигателя произошло в Германии на самолёте Heinkel He 178 с ТРД HeS 3[англ.]. ТРД разработан Хансом фон Охайном почти одновременно с Уиттлом — первый пуск в сентябре 1937 года, изготовлялся фирмой Heinkel-Hirth Motorenbau. Лётчик Эрих Варзиц совершил первый полёт 27 августа 1939 года.

Принцип работы

Воздух засасывается через воздухозаборник, далее многоступенчатый компрессор сжимает его и направляет в камеру сгорания. В ней сжатый воздух смешивается с топливом, которое воспламеняется. Горячие газы, образовавшиеся в результате горения, расширяются, заставляя вращаться турбину, которая расположена на одном валу с компрессором. Остальная часть энергии перемещается в сужающееся сопло. В результате направленного истечения газа из сопла на двигатель действует реактивная тяга. При горении топлива воздух, служащий рабочим телом, нагревается до 1500-2000 градусов Цельсия.

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки, и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предотвращения разрушения деталей двигателя для их изготовления используют жаропрочные сплавы и термобарьерные покрытия. А также применяется система охлаждения воздухом, отбираемым от средних ступеней компрессора.

Ключевые характеристики

Ключевые характеристики ТРД следующие:

  1. Создаваемая двигателем тяга.
  2. Удельный расход топлива (масса топлива, потребляемая за единицу времени для создания единицы тяги/мощности)
  3. Расход воздуха (масса воздуха, проходящего через каждое из сечений двигателя за единицу времени)
  4. Степень повышения полного давления в компрессоре
  5. Температура газа на выходе из камеры сгорания.
  6. Масса и габариты.

Степень повышения полного давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД (Jumo-004) этот показатель составлял 3, то у современных он достигает 40 (General Electric GE90).

Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными (НК-22) или трехкаскадными (НК-25). Каждый из каскадов работает со своей скоростью вращения и приводится в движение своим каскадом турбины. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последним (самым низкооборотным) каскадом турбины, проходит внутри полого вала компрессора второго каскада (каскада высокого давления для двухкаскадного двигателя, каскада среднего давления для трёхкаскадного). Каскады двигателя также именуют роторами низкого, среднего и высокого давления.

ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока.

Первичный воздух — поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической.

Вторичный воздух — поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.

Третичный воздух — поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя её в движение и отдавая ей часть своей энергии, а после неё расширяется в сопле и истекает из него, создавая реактивную тягу.

ТРД ВК-1 КБ Климова, с ныне всё реже использующимися центробежным компрессором и трубчатой камерой сгорания. Создан на основе лицензионного Rolls-Royce Nene[англ.] для МиГ-15, МиГ-17.

Благодаря компрессору ТРД (в отличие от ПВРД) может «трогать с места» и работать при низких скоростях полёта, что для двигателя самолёта является совершенно необходимым, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счёт компрессора.

При повышении скорости полёта давление в камере сгорания и расход рабочего тела растут за счёт роста напора встречного потока воздуха, который затормаживается во входном устройстве (так же, как в ПВРД) и поступает на вход низшего каскада компрессора под давлением более высоким, чем атмосферное, при этом повышается и тяга двигателя.

Диапазон скоростей, в котором ТРД эффективен, смещён в сторону меньших значений, по сравнению с ПВРД. Агрегат «турбина-компрессор», позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полёта, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей:

  • Температура, которую может выдерживать турбина, ограничена, что накладывает ограничение на количество тепловой энергии, подводимой к рабочему телу в камере сгорания, а это ведёт к уменьшению работы, производимой им при расширении.
Повышение допустимой температуры рабочего тела на входе в турбину является одним из главных направлений совершенствования ТРД. Если для первых ТРД эта температура едва достигала 1000 К, то в современных двигателях она приближается к 2000 К. Это обеспечивается как за счёт применения особо жаропрочных материалов, из которых изготовляются лопатки и диски турбин, так и за счёт организации их охлаждения: воздух из средних ступеней компрессора (гораздо более холодный, чем продукты сгорания топлива) подается на турбину и проходит сквозь сложные каналы внутри турбинных лопаток.
  • Турбина поглощает часть энергии рабочего тела перед поступлением его в сопло.

В результате максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД, что в соответствии с формулой для реактивной тяги ВРД на расчётном режиме, когда давление на срезе сопла равно давлению окружающей среды,[5]

, (1)

где  — сила тяги,
 — секундный расход массы рабочего тела через двигатель,
 — скорость истечения реактивной струи (относительно двигателя),
 — скорость полёта,
ограничивает сверху диапазон скоростей, на которых ТРД эффективен, значениями M = 2,5 — 3 (M — число Маха). На этих и более высоких скоростях полёта торможение встречного потока воздуха создаёт степень повышения давления, измеряемую десятками единиц, такую же, или даже более высокую, чем у высоконапорных компрессоров, и ещё бо́льшее сжатие становится нежелательным, так как воздух при этом нагревается, а это ограничивает количество тепла, которое можно сообщить ему в камере сгорания. Таким образом, на высоких скоростях полёта (при M > 3) агрегат турбина-компрессор становится бесполезным, и даже контрпродуктивным, поскольку только создаёт дополнительное сопротивление в тракте двигателя, и в этих условиях более эффективными становятся прямоточные воздушно-реактивные двигатели.

Типы турбореактивных двигателей

Одноконтурный ТРД

(тж. — ТРД)

Схема одноконтурного турбореактивного двигателя

Таковым является ТРД с одним контуром — то есть, с одной проточной частью.[6]
Одноконтурные ТРД имеют наилучшие показатели экономичности при скоростях выше 1000 км/ч, поэтому область их применения обычно ограничивается военными самолётами.[7] Одноконтурный ТРД может быть дополнен форсажной камерой (ТРДФ).[8]

Двухконтурный ТРД

Принципиальная схема турбореактивного двухконтурного двигателя (ТРДД):
1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура

(тж. — ТРДД)
Таковым является ТРД с внутренним и наружным контурами, в котором часть энергии сгорания топлива, подводимого во внутренний контур, преобразуется в механическую работу для привода компрессора (вентилятора) наружного контура.[9]

В основе ТРДД принцип вовлечения дополнительной массы воздуха в создание тяги, чтобы, прежде всего, увеличить КПД ТРД в плотной атмосфере. В отличие от одноконтурного ТРД (ТРД с одной единственной проточной частью) в ТРДД воздух, поступающий в двигатель через общий воздухозаборник, делится на два потока. Первый поток — поток внутреннего контура — сжимается в нескольких ступенях компрессора, поступает в камеру сгорания, проходит через турбину и выходит через сопло. Второй поток — поток наружного контура — также сжимается ступенями компрессора, но далее направляется к соплу в обход камеры сгорания. Оба потока обычно смешиваются за турбиной в так называемой «камере смешения»[10] до сопла и выходят через единое сопло общей реактивной струёй.[11]

Схема двухвального ТРДД с малой степенью двухконтурности.
Двухвальная схема вообще типична для ТРДД: один вал является общим для турбокомпрессора внутреннего контура, а второй вал является общим для турбокомпрессора наружного контура. Компрессор наружного контура одновременно является компрессором низкого давления для внутреннего контура и компрессором-вентилятором для наружного контура. Компрессор внутреннего контура для создания потока наружного контура не задействован. Обе турбины обоих турбокомпрессоров приводятся потоком газов только внутреннего контура.[12]

Наличие двух проточных частей (контуров), двух (и более) валов, двух турбокомпрессоров, камеры смешения — всё приводит к усложнению ТРД, увеличению его продольного и поперечного габаритов, а также увеличению массы. Но в результате повышается КПД двигателя на дозвуковых скоростях и снижается шум, создаваемый реактивной струёй. Повышение КПД достигается за счёт уменьшения разницы между скоростью истечения газов из сопла и скоростью самолёта за счёт увеличения расхода воздуха в обход внутреннего контура. Применение второго контура в двигателях для военной сверхзвуковой авиации позволяет охлаждать горячие части двигателя, это позволяет увеличивать температуру газов перед турбиной, что способствует дополнительному повышению тяги.[13]

Важным параметром любого ТРДД является степень двухконтурности — отношение расхода массы воздуха через внешний контур к расходу через внутренний. Этот параметр определяется на стадии конструирования и во многом зависит от назначения двигателя (области применения и скоростях эксплуатации).[12]

Двигатели с малой степенью двухконтурности (m < 2) применяются для сверхзвуковых самолётов, двигатели с m > 2 для дозвуковых пассажирских и транспортных самолётов. В случае, когда степень двухконтурности более 4-х (m > 4), ТРДД выполняют без смешения потоков до сопла, с коротким наружным контуром, так как в таких случаях из-за значительной разности давлений и скоростей смешение потоков затруднительно. При этом, с ростом степени двухконтурности, одновременно возрастает доля мощности, необходимая для привода компрессора-вентилятора. Подобные ТРДД становятся чем-то средним между ТРДД и турбовальным/турбовинтовым ГТД и выделяются в отдельный тип — так называемых турбовентиляторных двигателей.

ТРДД, подобно ТРД, могут быть снабжены регулируемыми соплами и форсажными камерами для сверхзвуковых военных самолётов.[11]

Впервые двухконтурный ТРД предложен создателем первого работоспособного ТРД Фрэнком Уитлом в начале 1930-х годов. Советский учёный и конструктор А. М. Люлька с 1937 года исследовал этот принцип и представил заявку на изобретение двухконтурного турбореактивного двигателя (авторское свидетельство 22 апреля 1941 года). Первые образцы ТРД с форсажными камерами созданы в Rolls-Royce во второй половине 1940-х годов, а Conway стал первым серийным.

Турбовентиляторный двигатель

Порою в популярной литературе ТРДД с высокой степенью двухконтурности (выше 2) называют турбовентиляторными. В англоязычной литературе этот двигатель называется turbofan с добавлением уточнения high bypass (высокая двухконтурность), сокращённо — hbp. ТРДД с высокой степенью двухконтурности выполняются, как правило, без камеры смешения. По причине большого входного диаметра таких двигателей их сопло внешнего контура достаточно часто делают укороченным с целью снижения массы двигателя.

ТРД с управляемым вектором тяги (УВТ)

УВТ
Отклоняемые створки сопла с УВТ.
ТРДД Rolls-Royce Pegasus, поворотные сопла которого позволяют осуществлять вертикальные взлёт и посадку. Устанавливается на самолёте Hawker Siddeley Harrier.

Специальные поворотные сопла на некоторых ТРДД позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняет управление самолётом. Но эти недостатки полностью компенсируются значительным повышением манёвренности и сокращением разбега самолёта при взлёте и пробега при посадке, вплоть до вертикальных взлёта и посадки. ОВТ используется исключительно в военной авиации.

ТРД с форсажной камерой

форсажная камера
Форсажная камера ТРД General Electric J79. Вид со стороны сопла. В торце находится стабилизатор горения с установленными на нём топливными форсунками, за которым видна турбина.
F-18 Hornet на форсаже взлетает с палубы авианосца

Хотя в ТРД имеет место избыток кислорода в камере сгорания, этот резерв мощности не удаётся реализовать напрямую — увеличением расхода горючего в камере — из-за ограничения температуры рабочего тела, поступающего на турбину. Этот резерв используется в двигателях, оборудованных форсажной камерой, расположенной между турбиной и соплом. В режиме форсажа в этой камере сжигается дополнительное количество горючего, внутренняя энергия рабочего тела перед расширением в сопле повышается, в результате чего скорость его истечения возрастает, и тяга двигателя увеличивается, в некоторых случаях, более, чем в 1,5 раза, что используется боевыми самолётами при полётах на высоких скоростях. В форсажной камере применяется стабилизатор, функция которого состоит в снижении скорости за ним до околонулевых значений, что обеспечивает стабильное горение топливной смеси. При форсаже значительно повышается расход топлива, ТРД с форсажной камерой практически не нашли применения в коммерческой авиации, за исключением самолётов Ту-144, полёты которых уже прекратились.

Гибридный ТРД

ТРД + прямоточный воздушно-реактивный двигатель

Гибридные ТРД
Турбопрямоточный двигатель J58
Скоростной разведчик SR-71 с гибридными ТРД/ПВРД

В 1960-х годах в США был создан гибридный ТРД / ПВРД Pratt & Whitney J58, использовавшийся на стратегическом разведчике SR-71 Blackbird. До числа Маха М = 2,4 он работал как ТРД с форсажем, а на более высоких скоростях открывались каналы, по которым воздух из входного устройства поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась, и она начинала работать, как ПВРД. Такая схема работы позволяла расширить скоростной диапазон эффективной работы двигателя до М = 3,2. В то же время двигатель уступал по весовым характеристикам как ТРД, так и ПВРД, и широкого распространения этот опыт не получил.

ТРД + ракетный двигатель

Двигатели этого типа при полёте в атмосфере в качестве окислителя используют кислород из атмосферного воздуха, а при полёте за пределами атмосферы в качестве окислителя используют жидкий кислород из топливных баков. Двигатели такого типа планировалось использовать в нереализованном проекте HOTOL и намечено в проекте Skylon[14].

ТРД с регулируемым соплом

регулируемое сопло
Регулируемое сопло ТРДДФ F-100 самолёта F-16 створки максимально открыты
Регулируемое сопло ТРДФ АЛ-21 регулируемые створки максимально закрыты

ТРД, скорость истечения реактивной струи в которых может быть как дозвуковой, так и сверхзвуковой на различных режимах работы двигателей, оборудуются регулируемыми соплами. Эти сопла состоят из продольных элементов, называемых створками, подвижных относительно друг друга и приводимых в движение специальным приводом, позволяющим по команде пилота или автоматической системы управления двигателем изменять геометрию сопла. При этом изменяются размеры критического (самого узкого) и выходного сечений сопла, что позволяет оптимизировать работу двигателя при полётах на разных скоростях и режимах работы двигателя.m. Архивировано из оригинала 14 апреля 2008 года.

Ядерный ТРД

Использует для нагрева воздуха ядерный реактор вместо сжигания керосина. Главным недостатком является сильное радиационное заражение использованного воздуха. Преимуществом является возможность длительного полёта[15].

Область применения

ТРД наиболее активно развивались в качестве двигателей для всевозможных военных и коммерческих самолётов до 70-80-х годов XX века. В настоящее время ТРД потеряли значительную часть своей ниши в авиастроении, будучи вытесненными более экономичными двухконтурными ТРД (ТРДД).

Можно сказать, что с 1960-х и по сей день в самолётном авиадвигателестроении — эра ТРДД. ТРДД различных типов являются наиболее распространённым классом ВРД, используемых на самолётах, от высокоскоростных истребителей-перехватчиков с ТРДД с малой степенью до гигантских коммерческих и военно-транспортных самолётов с ТРДД с высокой степенью двухконтурности.

Примечания

  1. ГОСТ 23851-79 Двигатели газотурбинные авиационные. Термины и определения. (термин 10, стр.3).
  2. РЕАКТИ́ВНЫЙ ДВИ́ГАТЕЛЬ : [арх. 6 июня 2021] / М. Ю. Куприков // Большая российская энциклопедия [Электронный ресурс]. — 2017.
  3. Изобретения России // Газотурбинный двигатель. rus-eng.org. Дата обращения: 16 февраля 2019. Архивировано 17 февраля 2019 года.
  4. В. М. Корнеев. Особенности конструкции газотурбинных двигателей. — Ridero, 2018. — ISBN 978-5-4485-9499-1.
  5. Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  6. ГОСТ 23851-79. — С. 3. термин 11.
  7. Боевая авиационная техника . — С. 150. раздел III «Авиационные двигатели», глава 1 «Классификация и области применения».
  8. ГОСТ 23851-79. — С. 3. термин 12.
  9. ГОСТ 23851-79. — С. 3. термин 13.
  10. ГОСТ 23851-79. — С. 29. термин 175.
  11. 1 2 Боевая авиационная техника . — С. 149. раздел III «Авиационные двигатели», глава 1 «Классификация и области применения».
  12. 1 2 Боевая авиационная техника . — С. 205. раздел III «Авиационные двигатели», глава 4 «Конструктивные особенности ТРДД и ТРДДФ».
  13. Боевая авиационная техника . — С. 207. раздел III «Авиационные двигатели», глава 4 «Конструктивные особенности ТРДД и ТРДДФ».
  14. Александр Грек. Человек, который купил космодром // Популярная механика. — 2017. — № 11. — С. 54.
  15. Ядерное дежавю: существует ли ракета с ядерным двигателем. Популярная механика. Дата обращения: 12 сентября 2019. Архивировано 3 августа 2020 года.

Литература

  • ГОСТ 23851-79. Двигатели газотурбинные авиационные; термины и определения. — Москва: ИПК Издательство стандартов, 1979. — 99 с.
  • Павленко В. Ф. Боевая авиационная техника; летательные аппараты, силовые установки, их эксплуатация. — Москва: Воениздат, 1984. — 319 с.

This information is adapted from Wikipedia which is publicly available.

Read other articles:

فرانسيسكو فلوريس بيريز (بالإسبانية: Francisco Guillermo Flores Pérez)‏  معلومات شخصية اسم الولادة Francisco Guillermo Flores Pérez الميلاد 17 أكتوبر 1959(1959-10-17)سانتا آنا مونيسباليتي  الوفاة 30 يناير 2016 (56 سنة)سان سلفادور سبب الوفاة نزف مخي  مواطنة السلفادور  مناصب رئيس السلفادور (42 )   في المن

Soni Bayu PutrantoIrben Itjenau Informasi pribadiLahir4 Juli 1966 (umur 57)Kebumen, Jawa TengahAlma materAkademi Angkatan Udara (1988)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan UdaraMasa dinas1988—sekarangPangkat Marsekal Pertama TNISatuanKorps Administrasi (ADM)Sunting kotak info • L • B Marsekal Pertama TNI Soni Bayu Putranto (lahir 4 Juli 1966) adalah seorang perwira tinggi TNI-AU yang sejak 1 April 2023 mengemban amanat sebagai Kepala Dinas Keuangan…

Uruguayan footballer (born 1982) In this Spanish name, the first or paternal surname is Estoyanoff and the second or maternal family name is Poggio. Fabián Estoyanoff Estoyanoff playing for Peñarol in 2011Personal informationFull name Fabián Larry Estoyanoff PoggioDate of birth (1982-09-27) 27 September 1982 (age 41)Place of birth Montevideo, UruguayHeight 1.73 m (5 ft 8 in)Position(s) WingerTeam informationCurrent team FénixNumber 11Senior career*Years Team Apps …

Samad Vurgun (بالأذرية: Səməd Vurğun)‏    معلومات شخصية اسم الولادة (بالأذرية: Səməd Yusif oğlu Vəkilov)‏  الميلاد 21 مارس 1906(1906-03-21)Yukhari Salahli، أذربيجان الوفاة مايو 27, 1956 (عن عمر ناهز 50 عاماً)باكو، أذربيجان سبب الوفاة سرطان الرئة،  وسرطان  مكان الدفن رواق الشرف  [لغات أخرى]‏ …

American football and basketball coach (1874–1962) Charles BestBest pictured in The Cap & Gown 1918, Sewanee yearbookBiographical detailsBorn(1874-07-25)July 25, 1874Mechanicsburg, Pennsylvania, U.S.DiedJuly 4, 1962(1962-07-04) (aged 87)Alameda County, California, U.S.Alma materLafayette University (1899)Playing careerFootball1898Lafayette Position(s)QuarterbackCoaching career (HC unless noted)Football1900–1901Drake1902Purdue1917–1918SewaneeBasketball1901–1902Purdue Head co…

Ikon gaya Bizantin: Pengutukan pohon ara. Yesus mengutuk pohon ara adalah suatu peristiwa mukjizat yang diperbuat oleh Yesus Kristus yang dicatat dalam bagian Perjanjian Baru di Alkitab Kristen. Peristiwa ini secara khusus dicatat dalam dua kitab Injil, yaitu pada Injil Matius pasal 21,[1] dan Injil Markus pasal 11.[2] Tempat Lokasi terjadinya peristiwa ini adalah di tengah jalan antara Betania dan Yerusalem.[3] Catatan Alkitab Pada kedua Injil tersebut cerita ini terjadi…

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (janvier 2015). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » En pratique : Quelles sources sont attendues ? Comme…

American judge (1930–2017) Julian A. CookSenior Judge of the United States District Court for the Eastern District of MichiganIn officeDecember 30, 1996 – May 16, 2017Chief Judge of the United States District Court for the Eastern District of MichiganIn office1989–1996Preceded byJames Paul ChurchillSucceeded byAnna Diggs TaylorJudge of the United States District Court for the Eastern District of MichiganIn officeSeptember 23, 1978 – December 30, 1996Appointed byJimmy Ca…

Human settlement in EnglandWest LydfordThe bridge over the River Brue and St Peter's ChurchWest LydfordLocation within SomersetCivil parishLydford-on-FosseUnitary authoritySomerset CouncilCeremonial countySomersetRegionSouth WestCountryEnglandSovereign stateUnited Kingdom List of places UK England Somerset 51°04′58″N 2°37′30″W / 51.0829°N 2.6249°W / 51.0829; -2.6249 West Lydford is a village and former civil parish, now in the parish of Lydford-…

The Anglican Chapel of Salvador in a picture taken by Wilhelm Gaensly (1843–1928), circa 1870. The Anglican Chapel of Salvador was an Anglican church located in Salvador, capital of the Brazilian state of Bahia. First subject to the Church of England and then to the Anglican Episcopal Church of Brazil, the chapel was demolished in 1975 to make room for the Britânia Mansion residential building. History Anglicanism first arrived in Brazil in the early 19th century in the context of the transfe…

Railway station in Hidakagawa, Wakayama Prefecture, Japan Wasa Station和佐駅JR-West commuter rail stationWasa Station in February 2016General informationLocation1426-2 Wasa, Hidakagawa-cho, Hidaka-gun, Wakayam-kena 649-1443JapanCoordinates33°53′51″N 135°12′25″E / 33.8974°N 135.2069°E / 33.8974; 135.2069Owned by West Japan Railway CompanyOperated by West Japan Railway CompanyLine(s) W  Kisei Main Line (Kinokuni Line)Distance320.4 km (199.1…

Line of stylus pens designed by Apple Inc. Apple PencilApple Pencil (second generation)DeveloperApple Inc.ManufacturerApple Inc.TypeDigital stylusRelease dateNovember 11, 2015 (2015-11-11) (1st generation) November 7, 2018 (2018-11-07) (2nd generation)November 1, 2023 (2023-11-01) (USB-C)Introductory priceUS$99[1][2]System on a chip32-bit RISC ARM-based Cortex-M3CPUSTMicroelectronics STM32L151UCY6 Ultra-low-power MCU @ 32 MHzMemory64-K…

Medical specialty Nuclear medicineA nuclear medicine PET scanICD-10-PCSCICD-992MeSHD009683OPS-301 code3-70-3-72, 8-53[edit on Wikidata] Nuclear medicine or nucleology[1] is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is radiology done inside out because it records radiation emitted from within the body rather than radiation that is transmitted through the body from external source…

American competitive sailor Charlie BuckinghamPersonal informationNationality United StatesBorn (1989-01-16) January 16, 1989 (age 34)Newport Beach, California, U.S.Height6 ft 2 in (188 cm)Weight180 lb (82 kg)SportCountryUnited StatesSportSailingEventLaserCollege team Georgetown University Medal record Sailing Representing  United States Pan American Games 2019 Lima Men's Laser Charlie Buckingham (born January 16, 1989 in Newport Beach, California) is…

National Security Agency surveillanceMap of global NSA data collection as of 2007[update], with countries subject to the most data collection shown in red Programs Pre-1978 ECHELON MINARET SHAMROCK PROMIS Since 1978 Upstream collection BLARNEY FAIRVIEW Main Core ThinThread Genoa Since 1990 RAMPART-A Since 1998 Tailored Access Operations Since 2001 OAKSTAR STORMBREW Trailblazer Turbulence Genoa II Total Information Awareness President's Surveillance Program Terrorist Surveillance Program …

County in Missouri, United States County in MissouriCole CountyCountyThe Cole County Courthouse in Jefferson City SealLocation within the U.S. state of MissouriMissouri's location within the U.S.Coordinates: 38°31′N 92°17′W / 38.51°N 92.28°W / 38.51; -92.28Country United StatesState MissouriFounded1820Named forStephen ColeSeatJefferson CityLargest cityJefferson CityArea • Total402 sq mi (1,040 km2) • Land394 sq…

Locatie van Pati in Midden-Java Pati is een regentschap (kabupaten) in het noordoostelijk deel van de Indonesische provincie Midden-Java. De hoofdstad is Pati. Onderdistricten De onderdistricten (kecamatan) zijn: Batangan Cluwak Dukuhseti Gabus Gembong Gunungwungkal Jaken Jakenan Juwana Kayen Margorejo Margoyoso Pati Pucakwangi Sukolilo Tambakromo Tayu Tlogowungu Trangkil Wedarijaksa Winong · · Bestuurlijke indeling van Midden-Java Stadsgemeenten: Magelang · Surakarta · Salatiga · Semarang …

Musical Women on the Verge of a Nervous BreakdownBroadway PlaybillMusicDavid YazbekLyricsDavid YazbekBookJeffrey LaneBasisWomen on the Verge of a Nervous Breakdown by Pedro AlmodóvarProductions2010 Broadway 2015 West End Women on the Verge of a Nervous Breakdown is a musical with music and lyrics by David Yazbek and a book by Jeffrey Lane. Based on the Pedro Almodóvar film Women on the Verge of a Nervous Breakdown (1988), the musical tells the tale of a group of women in late 20th-century Madr…

Species of geometer moth in subfamily Sterrhinae For the moth from Australia and Indonesia with this name, see Scopula perlata. Cream wave Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Geometridae Genus: Scopula Species: S. floslactata Binomial name Scopula floslactata(Haworth, 1809) Synonyms Phalaena brunneata Goeze, 1781 Phalaena cariata Schrank, 1802 Phalaena concatenata Hufnagel, 1767 Phalaena dentilinearia Bor…

This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (July 2019) 1994 video gameAero Fighters 2Developer(s)Video SystemPublisher(s)SNKDesigner(s)A. ŌkawaraKatsuyuki YamamotoyaHiroko YokoyamaComposer(s)Hiroyuki ItouNorie AokiSoshi HosoiSeriesAero FightersPlatform(s)Arcade, Neo Geo AES, Neo Geo CDRelease 1994 ArcadeWW: 18 July 1994 Neo Geo AESJP: 26 August …

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.141.45.116