Мода (статистика)

Мо́да — одно или несколько значений во множестве наблюдений, которое встречается наиболее часто (мода = типичность). Иногда в совокупности встречается более чем одна мода, в данном случае модой будет арифметическое среднее всех мод(например: 6, 2, 6, 6, 8, 9, 9, 9, 0; (6+9)/2=7,5.)

Мода как средняя величина употребляется чаще для данных, имеющих нечисловую природу. Среди перечисленных цветов автомобилей — белый, чёрный, синий, белый, синий, белый — мода будет равна белому цвету. При экспертной оценке с её помощью определяют наиболее популярные типы продукта, что учитывается при прогнозе продаж или планировании их производства.

Для интервального ряда мода определяется по формуле:

здесь X — левая граница модального интервала, hМо — длина модального интервала, fМо − 1 — частота премодального интервала, fМо — частота модального интервала, fМо + 1 — частота послемодального интервала[1].

Модой абсолютно непрерывного распределения называют любую точку локального максимума плотности распределения. Для дискретных распределений модой считают любые значения ai, вероятность которого pi больше, чем вероятности соседних значений[2].

См. также

Примечания

  1. Шмойлова Р.А., Минашкин В.Г., Садовникова Н.А. Практикум по теории статистики. — 3-е изд. — М.: Финансы и статистика, 2011. — С. 127. — 416 с. — ISBN 9785279032969.
  2. Н. И. Чернова. Теория вероятностей. — Сибирский государственный университет телекоммуникаций и информатики, 2009.

Литература