Квазиправильные многогранники или мозаики имеют в точности два типа правильных граней, которые располагаются поочерёдно вокруг каждой вершины. Их вершинные фигуры являются прямоугольниками.
Эти формы, представленные парой (правильным многогранником и двойственным ему), могут быть заданы вертикальным символом Шлефли или r{p, q} для представления граней как правильного {p, q}, так и двойственного {q, p} многогранников. Квазиправильный многогранник с этим символом имеет вершинную конфигурацию[англ.]p.q.p.q (или (p.q)2).
В более общем случае квазиправильные фигуры могут иметь вершинную конфигурацию[англ.](p.q)r, представляющую r (2 или более) граней разного вида вокруг вершины.
Некоторые правильные многогранники и мозаики (имеющие чётное число граней в каждой вершине) могут также рассматриваться как квазиправильные путём разделения граней на два множества (как если бы мы их выкрасили в разные цвета). Правильная фигура с символом Шлефли {p, q} может быть квазиправильной и будет иметь вершинную кофигурацию (p.p)q/2, если q чётно.
Правильный многогранник или мозаика могут считаться квазиправильными, если они имеют чётное число граней при каждой вершине (а потому могут быть выкрашены в два цвета, чтобы соседние грани имели разные цвета).
Октаэдр можно считать квазиправильным как тетратетраэдр, (3a.3b)2, с раскрашенными попеременно треугольными гранями. Подобным же образом квадратную мозаику (4a.4b)2 можно считать квазиправильной, если раскрасить в стиле шахматной доски. Также и грани треугольной мозаики могут быть выкрашены в два альтернативных цвета, (3a.3b)3.
Правильные (p | 2 q) и квазиправильные многогранники (2 | p q) получаются построением Витхоффа с генераторной точкой на одном из 3 углов фундаментальной области. Это задаёт единственное ребро внутри фундаментальной области.
Коксетер определяет квазиправильный многогранник как многогранник, имеющий Символ Витхоффа[англ.] вида p | q r, и он будет правильным, если q=2 или q=r [3].
Диаграммы Коксетера — Дынкина является другой формой символического представления, которое позволяет показать связь между двумя двойственно-правильными формами:
Кроме того, октаэдр, являющийся также правильным, , с вершинной конфигурацией (3.3)2, может также считаться квазиправильным, если соседним граням дать различные цвета. В таком виде его иногда называют тетратетраэдром. Оставшиеся выпуклые правильные многогранники имеют нечётное число граней при каждой вершине и не могут быть выкрашены так, чтобы обеспечить транзитивность рёбер. Тетратетраэдр имеет диаграмму Коксетера — Дынкина.
Каждый из них образует общее ядро двойственной пары правильных многогранников. Имена (двух из) этих ядер напоминают о связанных двойственных парах, соответственно куб + октаэдр и икосаэдр + додекаэдр. Октаэдр является ядром двойственной пары тетраэдров, и при таком способе получения обычно называют его тетратетраэдром.
Каждый из этих квазиправильных многогранников можно построить с помощью полного усечения любого из родителей, усекая рёбра полностью, пока они не превратятся в точки.
Некоторые авторы высказывают мнение, что, поскольку двойственные многогранники к квазиправильным имеют те же симметрии, эти двойственные тела тоже следует считать квазиправильными, но не все математики придерживаются такого мнения. Эти двойственные многогранники транзитивны относительно своих рёбер и граней (но не вершин). Они являются рёберно транзитивными телами Каталана[англ.]. Выпуклые формы, согласно порядку многогранника (как выше):
Ромбододекаэдр с двумя типами перемежающихся вершин, 8 вершин с тремя ромбическими гранями, и 6 вершин с четырьмя ромбическими гранями.
Ромботриаконтаэдр с двумя типами перемежающихся вершин, 20 вершин с тремя ромбическими гранями, и 12 вершин с пятью ромбическими гранями.
Кроме того, будучи двойственным октаэдру, куб, являющийся правильным, может быть сделан квазиправильным, если раскрасить его вершины в два цвета, так, чтобы вершины на одном ребре имели разные цвета.
Можно уменьшить симметрию правильных многогранных сот вида {p,3,4} или как и получить квазиправильный вид , создавая попеременную раскраску {p,3} ячеек. Это можно сделать для евклидовых кубических сот {4,3,4} с кубическими ячейками, для компактных гиперболических сот {5,3,4} с додекаэдральными ячейками и паракомпактных сот {6,3,4} с конечными шестиугольными мозаичными ячейками. Они имеют четыре ячейки вокруг каждого ребра, попеременно выкрашенные в 2 цвета. Их вершинные фигуры — квазиправильные тетраэдры, = .
Правильные и квазиправильные соты: {p,3,4} и {p,31,1}
Таким же образом можно уменьшить вдвое симметрию правильных гиперболических сот вида {p,3,6} или как и получить квазиправильный вид , задавая попеременную раскраску {p,3} ячеек. Они имеют шесть ячеек вокруг каждого ребра, поочерёдно выкрашенные в 2 цвета. Их вершинные фигуры — квазиправильные треугольные мозаики, .
H. S. M. Coxeter, M. S. Longuet-Higgins, J. C. P. Miller. Uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. — Т. 246, вып. 916. — С. 401–450. — ISSN0080-4614. — doi:10.1098/rsta.1954.0003. — JSTOR91532. (Section 7, The regular and quasiregular polyhedra p | q r)