Алгоритмы быстрого возведения в степень (дихотомический алгоритм возведения в степень, бинарный алгоритм возведения в степень) — алгоритмы, предназначенные для возведения числа в натуральную степень за меньшее число умножений, чем это требуется в определении степени[1]. Многие из этих алгоритмов основаны на том, что для возведения числа в степень не обязательно перемножать число на само себя раз, а можно перемножать уже вычисленные степени. В частности, если степень двойки, то для возведения в степень достаточно число возвести в квадрат раз, затратив при этом умножений вместо . Например, чтобы возвести число в восьмую степень, вместо выполнения семи умножений можно возвести число в квадрат (), потом результат возвести ещё раз в квадрат и получить четвёртую степень (), и наконец результат ещё раз возвести в квадрат и получить ответ ().
Кроме того, некоторые алгоритмы для дальнейшей оптимизации используют тот факт, что операция возведения в квадрат быстрее операции умножения за счёт того, что при возведении в квадрат цифры в сомножителе повторяются[2].
Бинарный алгоритм возведения в степень был впервые предложен в XV веке персидским математиком Аль-Каши[3].
Данные алгоритмы не всегда оптимальны. Например, при использовании схемы «слева направо» быстрое возведение в степень n = 15 потребует выполнения трёх операций умножения и трёх операций возведения в квадрат, хотя возведение в 15-ю степень можно выполнить и за 3 умножения и 2 возведения в квадрат[4]. Оптимальное возведение в степень соответствует построению кратчайшей аддитивной цепочки.
Основным алгоритмом быстрого возведения в степень является схема «слева направо». Она получила своё название вследствие того, что биты показателя степени просматриваются слева направо, то есть от старшего к младшему[5].
Последовательность действий при использовании данной схемы можно описать так:
Представить показатель степени n в двоичном виде
Если = 1, то текущий результат возводится в квадрат и затем умножается на x. Если = 0, то текущий результат просто возводится в квадрат[6]. Индекс i изменяется от k-1 до 0[7].
Таким образом, алгоритм быстрого возведения в степень сводится к мультипликативному аналогу схемы Горнера[6]:
Обобщения
Пусть пара (S, *) — полугруппа, тогда мы можем назвать операцию * умножением и определить операцию возведения в натуральную степень:
Тогда для вычисления значений an в любой полугруппе (в абелевой группе в частности) можно использовать алгоритмы быстрого возведения в степень[8].
Примеры решения задач
Применяя алгоритм, вычислим 2113:
Схема «справа налево»
В данной схеме, в отличие от схемы «слева направо», биты показателя степени просматриваются от младшего к старшему[5].
Последовательность действий при реализации данного алгоритма.
Представить показатель степени n в двоичном виде.
Положить вспомогательную переменную z равной числу x.
Если , то текущий результат умножается на z, а само число z возводится в квадрат. Если = 0, то требуется только возвести z в квадрат[6]. При этом индекс i, в отличие от схемы слева направо, изменяется от 0 до k-1 включительно[7].
Данная схема содержит столько же умножений и возведений в квадрат, сколько и схема «слева направо». Однако несмотря на это, схема «слева направо» выгоднее схемы «справа налево», особенно в случае, если показатель степени содержит много единиц. Дело в том, что в схеме слева направо в операции result = result · x содержится постоянный множитель x. А для небольших x (что нередко бывает в тестах простоты) умножение будет быстрым. К примеру, для x = 2 мы можем операцию умножения заменить операцией сложения[7].
Математическое обоснование работы данного алгоритма можно представить следующей формулой:
И для схемы «слева направо», и для схемы «справа налево» количество операций возведения в квадрат одинаково и равно k, где k — длина показателя степени n в битах, . Количество же требуемых операций умножения равно весу Хэмминга, то есть количеству ненулевых элементов в двоичной записи числа n. В среднем требуется операций умножения[6].
Например, для возведения числа в сотую степень этим алгоритмом потребуется всего лишь 8 операций умножения и возведения в квадрат[5].
Для сравнения, при стандартном способе возведения в степень требуется операция умножения, то есть количество операций может быть оценено как [10].
Оптимизация алгоритма
Как правило, операция возведения в квадрат выполняется быстрее операции умножения. Метод окон позволяет сократить количество операций умножения и, следовательно, сделать алгоритм возведения в степень более оптимальным[8].
Окно фактически представляет собой основание системы счисления[7]. Пусть w — ширина окна, то есть за один раз учитывается w знаков показателя.
Рассмотрим метод окна.
Для заранее вычисляется xi
Показатель степени представляется в следующем виде: , где
Пусть y — переменная, в которой будет вычислен конечный результат. Положим .
Для всех i = k/w — 1, k/w — 2, …, 0 выполнить следующие действия:
В данном алгоритме требуется k возведений в квадрат, но число умножений в среднем сокращается до k/w[8].
Ещё более эффективным является метод скользящего окна. Он заключается в том, что ширина окна во время выполнения процесса может изменяться:
Показатель степени представляется в виде , где , а ei+1 — ei ≥ w.
Для вычисляется xi. Далее будем обозначать xi как xi.
Пусть y — переменная, в которой будет вычислен конечный результат. Положим .
Для всех i = l — 1, l — 2, …, 0 выполнить следующие действия:
Для всех j от 0 до ei+1 — ei — 1 y возвести в квадрат
Для всех j от 0 до e0 — 1 y возвести в квадрат[8].
Количество операций возведения в степень в данном алгоритме такое же, как и в методе окна, а вот количество операций умножений сократилось до l, то есть до в среднем[8].
Для примера возведём методом скользящего окна число x в степень 215. Ширина окна w = 3.
215 = 27 + 5 · 24 + 7
y = 1
y = y · x = x
y 3 раза возводится в квадрат, так как на данном шаге e2 — e1 −1 = 7 — 4 — 1 = 2, а отсчёт ведётся с нуля, то есть y = y8 = x8
y = y · x5 = x13
y 4 раза возводится в квадрат, так как на данном шаге e1 — e0 −1 = 4 — 0 — 1 = 3, то есть y = y16= x208