Лев Моисеевич Ягупольский родился 6 февраля 1922 года в Умани (ныне Черкасская область, Украина). В 1938 году поступил на химический факультет Киевского университета. В 1941 году отказался от установленной для студентов последних курсов отсрочки и пошёл добровольно в армию. В октябре 1941 — мае 1942 года учился в Военной академии химической защиты, затем был назначен начальником химической службы стрелкового полка, воевавшего в составе Калининского фронта. Участвовал в боевых действиях, окончил войну в звании капитана.
После войны продолжил обучение в Киевском университете и окончил его с отличием в 1947 году. В том же году поступил в аспирантуру по специальности «Органическая химия», и в 1951 году под руководством академика А. И. Киприанова защитил кандидатскую диссертацию на тему «Фторпроизводные бензотиазола и фторсодержащие цианиновые красители». После защиты Л. М. Ягупольский поступил на работу младшим научным сотрудником в киевский Институт органической химии АН УССР (ИОХ), где продолжил исследования в новой и перспективной в то время научной области органической химии фтора. В 1955—1965 годах занимал должность старшего научного сотрудника ИОХ. В 1965 году возглавил созданный в институте отдел химии фторорганических соединений и находился на должности зав. отдела до 1987 года. В 1965 году Л. М. Ягупольский защитил докторскую диссертацию на тему «Ароматические соединения с фторсодержащими заместителями», в 1967 году ему было присвоено звание профессора.
В 1969—1973 годах Л. М. Ягупольский занимал должность заместителя директора ИОХ по научной работе, также участвовал в работе опытного производства института. В 1987—2009 годах — главный научный сотрудник Института органической химии[2].
Лев Моисеевич Ягупольский умер 5 апреля 2009 года в Киеве.
Сын учёного Юрий Львович Ягупольский (род. 1949) также известный химик-фторорганик, с 1988 года заведует отделом химии фторорганических соединений Института органической химии НАНУ[3].
Почётный знак НАН Украины «За подготовку научной смены»[4]
Вклад в науку
Л. М. Ягупольский проводил исследования в области синтеза органических соединений с фторсодержащими заместителями, в том числе элементоорганических — фосфора, селена, теллура, поливалентного иода. Всестороннее изучение свойств синтезируемых соединений позволило сделать вклад в развитие фундаментальных теорий органической химии. Несколько крупных циклов работ учёного были посвящены веществам, важным с практической точки зрения — органическим красителям, лекарственным средствам, пестицидам, соединениям, обладающим жидкокристаллическими свойствами.
Методы синтеза фторорганических соединений
Исследование реакции Шимана
Первой задачей учёного при выполнении кандидатской работы стало введение атома фтора в бензольное кольцо бензотиазола. Для этого применяют реакцию Шимана — термическое разложение сухих тетрафторборатов арилдиазония. Но в данном случае вначале не удалось выделить твёрдый тетрафторборат из-за высокой растворимости в кислотах (в условии реакции диазотирования) по причине образования соли по гетероциклическому атому азота. Получить кристаллический осадок удалось, проводя диазотирование в растворе тетрафторборатной кислоты, в результате из 2-метил-6-аминобензотиазола получен 2-метил-6-фторбензотиазол, используемый далее для получения цианиновых красителей. Данную методику стали применять для замены аминогруппы на фтор в других азотистых гетероциклах. Впоследствии с Н. В. Павленко разработана модификация реакции Шимана — вместо тетрафторборатов использованы трис(перфторалкил)трифторфосфаты арилдиазония, разложение которых проходит при более низких температурах и с высокими выходами фторированных аренов[5].
Исследование реакции Свартса
Для получения фторорганических соединений широко применяется реакция Свартса — замена на фтор атомов других галогенов действием трифторида сурьмы или фтороводорода в присутствии пентахлорида сурьмы. С помощью этой реакции из трихлорметильных производных были получены соединения с трифторметильной группой, в частности, трифторметил- и трифтрометилтиобензотиазолы. Л. М. Ягупольским совместно с И. В. Троицкой, Н. В. Кондратенко, М. И. Дронкиной впервые в органические соединения введена трифторметоксигруппа -OCF3, и группировки -O-CF2-O- и -CF2-O-CF2-, также получены и изучены многочисленные ароматические соединения с ненасыщенными фторсодержащими заместителями и с трифторметильной группой, отделённой от ядра гетероатомами (O, N, S). Изучалось влияние гетероатомов и заместителей в ароматическом ядре на протекание реакции Свартса. Установлено, что электронодонорная способность гетероатомов способствует замещению хлора на фтор в трихлорметильной группе, то есть, лёгкость замещения убывает в ряду ArN(R)CCl3 > ArSCCl3 > ArOCCl3. Электронодонорные заместители в ядре также облегчают обмен, а электроноакцепторные затрудняют его. Совместно с Г. И. Матюшечевой была открыта реакция гидразидов карбоновых кислот с пентахлоридом фосфора, позволяющая альтернативным способом получать исходные для реакции Свартса трихлорметильные производные (ранее их получали прямым хлорированием метильных групп). Практическим результатом этих исследований стала разработка технологии синтеза гербицида «Трефлан», внедрённая в промышленное производство (Навои, Узбекистан, ПО «Навоиазот», мощность производства 2000 тонн в год)[6].
Разработка методов синтеза с использованием новых фторирующих агентов
Помимо изучения уже известных реакций получения фторорганических соединений, проводился поиск новых реагентов. Впервые синтезирована фенилтетрафторсурьма, оказавшаяся очень мощным фторирующим средством. Цикл работ, выполненный совместно с сотрудниками Одесского политехнического института был посвящён исследованию новых фторирующих агентов — тетрафториду серы в среде фтороводорода и системе тетрафторид серы — фтороводород — галогенирующий агент (хлор, бром, дитиодихлорид). Применение тетрафторида серы позволяет осуществлять замену атомов кислорода на фтор, в частности, превращать карбоксильные группы в трифторметильные. В среде фтороводорода оказалось возможным получать бензотрифториды не только из соответствующих карбоновых кислот, но и из их метиловых эфиров (в отсутствии фтороводорода реакция сложных эфиров идёт при высокой температуре и даёт низкие выходы целевых продуктов). Трифторацетоксигруппа CF3COO- при действии данного реагента превращается в пентафторэтоксигруппу C2F5O-. По этому методу из три-, тетра-, пента- и гекса(трифторацетокси)бензолов получены соответствующие поли(пентафторэтокси)замещённые. Система SF4 — HF — галогенирующий агент, разработанная совместно с Б. В. Куншенко даёт возможность осуществлять замену атомов водорода на фтор у sp3-гибридизованного атома углерода[7].
Разработка методов дифторметилирования
Действием доступного реагента хлордифторметана (хладон-22) осуществлено прямое дифторметилирование («фреонирование») фенолов и тиофенолов с образованием дифторметоксиаренов и арилдифторметилсульфидов. Метод синтеза оказался интересен тем, что при введении в него гидроксибензальдегидов не идёт реакция Канниццаро, несмотря на то, что фреонирование проводится в щелочной среде. В дальнейшем из соединений с дифторметоксигруппой путём хлорирования получены дифторхлорметоксибензолы, а окислением тиоэфиров — дифторметилсульфоксиды и сульфоны. Меркаптоазолы, в зависимости от условий синтеза, дают различные продукты — дифторметилируются по атому серы меркаптогруппы, атомам серы и азота или по двум атомам азота (производные имидазола и бензимидазола). Этим способом впервые были получены производные бензимидазола с фторсодержащими заместителями у обоих атомов азота. В реакцию фреонирования введены также сульфамиды, дающие в результате N-дифторметильные производные. Исследования реакции дифторметилирования проводились совместно с С. В. Шеляженко, К. И. Петко[8].
Открытие ион-радикального и катионного перфторалкилирования
Ранее считалось, что перфторалкилиодиды в отличие от алкилиодидов не вступают в реакции алкилирования из-за обращённой полярности их молекул. Исследования Л. М. Ягупольского и В. Н. Бойко показали, что перфторалкилирование тиофенолов можно осуществить по ион-радикальному механизму в условиях ультрафиолетового облучения в жидком аммиаке или полярных растворителях. Ион-радикальное перфторалкилирование позволило получать считавшиеся труднодоступными перфторалкилсульфиды с любой длиной цепи перфторалкильного заместителя нормального или разветвлённого строения. Из селено- и теллурофенолов аналогичным способом были получены неизвестные ранее перфторалкилселениды и теллуриды. В реакцию ион-радикального перфторалкилирования вступают также C-нуклеофилы, например, β-дикетоны.
Л. М. Ягупольским впервые получены соли арилперфторалкилиодония (см. Ониевые соединения), оказавшиеся удобными реагентами для алкилирования по катионному механизму. Они вступают в реакцию с нуклеофилами при температурах −50 … +20 °C в диметилформамиде. Методом катионного перфторалкилирования, аналогично ион-радикальному, можно получать перфторалкилсульфиды и селениды, а вторичные и третичные производные анилина дают с этими реагентами продукты алкилирования в пара-положение. Арилперфторалкилиодониевые соли реагируют также с неорганическими солями — нитритами, цианидами, тиоцианатами, селеноцианатами образуя, соответственно, нитро-, циано-, цианотио- и цианоселеноперфторалканы. Аналогично иодониевым соединениям, перфторалкилирующими агентами оказались и впервые синтезированные Л. М. Ягупольским соли диарилперфторалкилсульфония[9].
Другие исследования в области фторорганического синтеза
Хлордифторуксусная кислота обычно используется в синтезах (в виде соли) как источник дифторкарбена:
Совместно с В. А. Коринько найдены условия её конденсации с фенолами и тиофенолами с сохранением карбоксильной группы. В аналогичную реакцию введена и монохлорфторуксусная кислота; окислением и декарбоксилированием продуктов конденсации (эфиров арилтиофторуксусной кислоты) были получены арилмонофторметилсульфоны[10]:
Л. М. Ягупольским найден удобный реагент, позволяющий производить замену атомов иода или брома на трифторметильную группу — трифторметилмедь. Синтезы с трифторметилмедью можно проводить в стеклянной посуде при атмосферном давлении и с использованием доступных реагентов. Аналогичный способ — замена галогена на трифторметилтиогруппу действием трифторметилсульфида меди — разработан совместно с Н. В. Кондратенко и А. А. Коломейцевым. Особенно пригодным этот реагент оказался для введения трифторметильной группы в ароматические соединения с электроноакцепторными заместителями, например, с нитрогруппой. Совместно с В. П. Самбур найден ещё один метод введения трифторметилтиогруппы — реакция солей диазония с трифторметилсульфидом серебра AgSCF3[11].
Перфтор-трет-бутилцезий (CF3)3CCs был использован для замены атомов фтора в замещённых фторбензолах на перфтор-трет-бутильную группу, а также для синтеза арилперфтор-трет-бутилсульфидов и селенидов[12].
Синтез фторсодержащих фосфорорганических и иодорганических соединений
Л. М. Ягупольским, В. Я. Семением и К. И. Бильдиновым разработан метод электрохимического фторирования триалкилфосфиноксидов с образованием трис(перфторалкил)дифторфосфоранов. Гидролиз этих продуктов позволяет получить соответствующие фосфоновые и фосфиновые кислоты, считавшиеся «экзотическими», как и другие соединения фосфора с перфторалкильными группами. До этого исследования подобные реакции считались невозможными из-за отравления электродов фосфором[12].
Методы получения соединений поливалентного иода разработаны совместно с В. В. Лялиным, И. И. Малетиной и В. В. Ордой. Ароматические соединения с дифториодильной группой (ArIF2) получены по реакции тетрафторида серы с иодозил- (ArIO) или бис(трифторацетокси)иодпроизводными, а также взаимодействием иодаренов с дифторидом ксенона. Из иодил- и дифториодиларенов впервые были получены органические соединения пятикоординационного иода — тетрафториодарены действием тетрафторида серы и тетракис(перфторацилокси)иодарены действием ангидридов перфторалкилкарбоновых кислот[13].
Изучение фторсодержащих красителей и жидкокристаллических соединений
Изучению фторсодержащих красителей Л. М. Ягупольский уделял значительное внимание в течение всей своей научной деятельности. По мере накопления научного материала — синтеза новых красителей различной структуры и с разнообразными по электронной природе заместителями — появилась возможность целенаправленно влиять не только на спектральные характеристики красителей, но и на их основность, светостойкость, сенсибилизирующую способность. Постепенно были установлены закономерности влияния атомов фтора и фторсодержащих заместителей на свойства большинства классов органических красителей. Найденные корреляционные зависимости батохромного или гипсохромного эффекта заместителей, галохромии, основности от электронного строения заместителей и молекулы в целом позволили синтезировать практически полезные вещества — красители для текстильной промышленности, кислотно-основные индикаторы, фотосенсибилизаторы, люминофоры. Наиболее детально изучались цианиновые красители с атомами фтора и фторсодержащими заместителями как в ароматическом ядре, так и в полиметиновой цепи. В 1950—1978 годах в «Журнале органической химии» опубликована серия из более 40 статей под общим названием «Цианиновые красители, содержащие фтор»[14].
Совместно с Ю. А. Фиалковым и М. М. Кремлёвым была открыта реакция полифторвинильных соединений лития с полифторолефинами, дающая сопряжённые перфторполиены. На основе этой реакции разработан метод синтеза α,ω-диарилперфторполиенов, которые стали классическими объектами для теории цветности. Некоторые соединения этого типа обладают свойствами жидких кристаллов[15].
По теме жидкокристаллических соединений выполнен большой цикл работ совместно с Ю. Я. Фиалковым и С. В. Шеляженко. Для производных дифенила, бензилиденанилина, органических кислот и их эфиров изучено влияние замены концевых атомов водорода фтором на особенности фазовых переходов, термодинамических параметров этой группы веществ. Показано, что путём введения в молекулу фторсодержащих групп можно целенаправленно изменять свойства жидкокристаллических соединений[16].
Изучение электронного строения фторорганических соединений
Значительным вкладом Л. М. Ягупольского в теорию органической химии является изучение электронного и пространственного строения полученных соединений. Электронная природа и влияние фторсодержащих заместителей на свойства ароматических соединений изучались различными методами. Для более 60 заместителей впервые определены σ-константы уравнения Гаммета. Среди фторсодержащих групп обнаружены сильные акцепторы электронов, такие, как трифторметилсульфонильная группа -SO2CF3, для которой константа уравнения Гаммета для пара-положения σp = 1,04. Позднее было показано, что если заменять кислород в таких заместителях, как -SO2CF3 или -SO2F и других на трифторметилсульфонимидную группировку =NSO2CF3, то образуются сверхсильные электроноакцепторные группы, для которых σp = 1,4…1,75, что соответствует влиянию на молекулу двух или трёх нитрогрупп. Р. Тафт, предложивший собственную модификацию уравнения Гаммета, назвал этот принцип построения сверхсильных электроноакцепторов «принципом Ягупольского».
Изучение сильных электроноакцепторных заместителей оказалось ценным и для практики органического синтеза. Установлено, что имидоилхлориды R(Cl)=NSO2CF3 вступают в аза-перегруппировку Курциуса, нехарактерную для производных хлорангидридов карбоновых кислот, у которых кислород замещён на другие =NR-группы. Продуктами такой разновидности реакции Курциуса являются карбодиимиды RN=C=NSO2CF3. Введение =NSO2CF3-группы (путём замены карбонильного атома кислорода) в цианиновые красители и некоторые другие донорно-акцепторные системы приводит к сильному батохромному сдвигу — максимумы поглощения таких продуктов сдвигаются в длинноволновую область на 150—200 нм. Полученные таким способом красители имеют глубокую окраску и поглощают в ближней инфракрасной области. Путём замены двух атомов водорода у аминогруппы анилина на трифторметилсульфонильные группы удалось изменить ориентирующее влияние аминогруппы в реакциях электрофильного замещения, так, нитрование N,N-бис(трифторметилсульфонил)анилина идёт на 80 % в мета-положение. При введении только одной сильной электроноакцепторной группы сохраняется орто-, пара-ориентирующее влияние электронодонорного атома азота[17].
Введение в молекулу сверхсильных электроноакцепторов может привести к получению сверхсильных кислот за счёт увеличения кислотности связей C—H, N—H или O—H. Так, показано, что замена атомов кислорода в п-толуолсульфонамиде H3C—C6H4—SO2NH2 на трифторметилсульфонимидные группы увеличивает кислотность в газовой фазе на 25 порядков, а в растворе на 13 единиц pKa. Предполагается, что применяя принцип Ягупольского к трифторметансульфокислоте, которая сама является суперкислотой, можно получить наиболее сильные из всех известных кислот. Производные (соли и фторангидриды) таких кислот были получены[18].
Ранее считалось, что только нитропроизводные ароматических соединений способны образовывать σ-комплексы типа Мейзенгеймера Л. М. Ягупольским впервые были получены и изучены такие комплексы трифторметилсульфониларенов. В качестве нового объекта для изучения анионных комплексов был взят 1,3,5-трис(трифторметилсульфонил)бензол, который образует устойчивые σ-комплексы с алкоголятами, фенолятами, тиофенолятами, цианидами, сульфитами и другими анионами. Полученные данные вошли в учебник, издаваемый Московским университетомРеутов О. А., Курц А. Л., Бутин К. П. Органическая химия. — 1999. — Т. II. — ISBN 5-211-03491-0.[18].
Разработка лекарственных препаратов
Многие работы Л. М. Ягупольского и его соавторов посвящены синтезу новых биологически активных веществ и исследованию влияния фторсодержащих групп на физиологическую активность.
Совместно с И. И. Малетиной и К. И. Петко получен кардиотонический препарат (активатор калиевых каналов) флокалин, отличающийся низкой токсичностью. Д. В. Федюк под руководством Ягупольского синтезирован ряд фторсодержащих бензимидазолов, проявляющих активность блокаторов рецепторов ангиотензина II, совместно с Ю. А. Фиалковым получены N-арилзамещённые 2-аминоимидазолины — аналоги клофелина. В начале 2000-х годов синтезирована молекула, сочетающая свойства форидона и флокалина, что позволяет в дальнейшем создать новый класс гибридных лекарственных средств[19].
Издательская, организаторская и педагогическая деятельность
Л. М. Ягупольский был членом редколлегии и научным редактором «Украинского химического журнала», членом редколлегии межведомственного сборника «Физиологически активные вещества», членом редколлегии международного журнала «Dyes and pigments». Он участвовал в шестнадцати украинских конференциях по органической химии (с 1955 года), был членом оргкомитетов этих конференций, также участвовал в международных конференциях по химии фторорганических соединений, конференциях по химии красителей, люминофоров, лекарственных препаратов. Л. М. Ягупольский читал лекции по химии фторорганических соединений в университетах Германии и Израиля. Подготовил 75 кандидатов наук, 10 его учеников защитили докторские диссертации[20].
Память
24 ноября 2012 года на здании Института органической химии НАНУ в Киеве открыта мемориальная доска Льву Моисеевичу Ягупольскому. Авторы: Крылов Борис, Сидорук Олесь.
Библиография
Лев Моисеевич Ягупольский опубликовал 10 монографий, более 800 научных статей, 15 обзоров, около 160 тезисов докладов на научных конференциях, симпозиумах и съездах, на его имя зарегистрированы 220 авторских свидетельств и 40 патентов[21][3][4]. Научные статьи Л. М. Ягупольского публиковались на русском, украинском и английском языках в следующих периодических изданиях:
Коллектив авторов. Химическое строение, свойства и реактивность органических соединений. — Киев, 1969. — 108 с.
Ягупольский Л. М., Бурмаков А. И., Алексеева Л. А.Фторирование органических соединений четырёхфтористой серой // Реакции и методы исследования органических соединений. Кн. 22 / под ред. Б. А. Казанского, И. Л. Кнуянца и др.. — М.: Химия, 1971. — С. 47—165. — 354 с.
Фиалков Ю. А., Ягупольский Л. М.Ароматические соединения, содержащие фтор // Синтезы фторорганических соединений / под ред. И. Л. Кнуянца и Г. Г. Якобсона. — М.: Химия, 1973. — С. 215—308. — 312 с.
Коллектив авторов. Синтезы иодистых органических соединений / под ред. Л. М. Ягупольского, А. Н. Новикова и Е. Б. Меркушева. — Томск: ТГПИ им. Ленкома, 1976. — 90 с.
Коллектив авторов. Синтезы фторорганических соединений. Мономеры и промежуточные продукты / под ред. И. Л. Кнуянца и Г. Г. Якобсона. — М.: Химия, 1977. — 304 с.
Yu. A. Fialkov, L. M. Yagupolskii.Aromatic Compounds with Fluorinated Side Chains // Syntheses of Fluoroorganic Compounds / Ed. by I. L. Knuyants, G.G. Yakobson. — Berlin: Springer-Ferlag, 1985. — P. 233—289.
Коллектив авторов.Новые пути применения четырёхфтористой серы в органическом синтезе // Новые фторирующие реагенты в органическом синтезе / под ред. Л. С. Германа и С. В. Земскова. — Новосибирск: Наука, 1987. — С. 197—249. — 255 с.
Ягупольский Л. М. Ароматические и гетероциклические соединения с фторсодержащими заместителями. — Киев: Наукова думка, 1988. — 319 с.
L. M. Yagupolskii, I. I. Maletina, B. M. Klebanov.Fluorine-Containing Cardiovascular Drugs // Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications / Eds. R. Filler, Y. Kobayashi, L. M. Yagupolskii. — New York: Elsevier, 1993. — P. 73—99.
Колектив авторів. Видатні імена в історії хімічної науки в Україні. С. М. Реформатський та його знаменита реакція. — Киев: Київський університет, 1997. — 95 с.
Ільченко А. Я., Матюшечева Г. І. Лев Мусійович Ягупольський / відп. ред. акад. НАНУ М. О. Лозинський. — Харків: НАН України; ТОВ «Золоті строінки», 2002. — 224 с. — (Біобібліографія вчених України). (укр.) (рус.) (англ.)
IN MEMORIAM: Лев Моисеевич Ягупольский (6 февраля 1922 — 5 апреля 2009) // Химия гетероциклических соединений : журнал. — 2009. — № 4 (502). — С. 634.
Ягупольський Л. М., Ягупольський Ю. Л., Матюшечева Г. І. Хімія фтороорганічних сполук // Журнал орг. та фарм. хімії. — 2009. — Т. 7, вып. 2(26). — С. 47—61.