По сравнению с графическими процессорами, рассчитан на более высокий объём вычислений с пониженной точностью (например, всего 8-разрядную точность[3]) при более высокой производительности на ватт и отсутствии модуля для растризации и текстурных блоков[1][2].
Утверждается, что тензорные процессоры применялись в серии игр в го программы AlphaGo против Ли Седоля[2] и в следующих подобных поединках[4]. Также корпорация применила тензорные процессоры для обработки фотографий Google Street View на предмет извлечения текста, сообщалось, что весь объём обработан менее чем за пять дней. В Google Фото один тензорный процессор может обрабатывать более 100 миллионов фотографий в день. Также устройство применяется для самообучающейся системы RankBrain, обрабатывающей отклики поисковой системы Google.
Устройство реализовано как матричный умножитель для 8-разрядных чисел, управляемый CISC-инструкциями центрального процессора по шине PCIe 3.0. Изготавливается по технологии 28 нм, тактовая частота составляет 700 МГц и имеет тепловую расчётную мощность 28—40 Вт. Оснащается 28 Мбайт встроенной оперативной памяти и 4 Мбайт 32-разрядных аккумуляторов, накапливающих результаты в массивах из 8-битных множителей, организованных в матрицу размером 256×256. Инструкции устройства передают данные на узел или получают их из него, выполняют матричные умножения или свёртки[5]. В такт может производиться 65536 умножений на каждой матрице; в секунду — до 92 трлн[6].
Характеристики разных поколений тензорных процессоров