Глюконеогене́з — метаболический путь, приводящий к образованию глюкозы из неуглеводных соединений (в частности, пирувата). Наряду с гликогенолизом, этот путь поддерживает в крови уровень глюкозы, необходимый для работы многих тканей и органов, в первую очередь, нервной ткани и эритроцитов. Он служит важным источником глюкозы в условиях недостаточного количества гликогена, например, после длительного голодания или тяжёлой физической работы[1][2]. Глюконеогенез является обязательной частью цикла Кори, кроме того, этот процесс может быть использован для превращения пирувата, образованного при дезаминированииаминокислоталанина и серина[3].
Суммарное уравнение глюконеогенеза выглядит следующим образом:
Глюконеогенез и гликолиз регулируются реципрокно: если клетка снабжена энергией в достаточной степени, то гликолиз приостанавливается, и запускается глюконеогенез; напротив, при активизации гликолиза происходит приостановление глюконеогенеза[5].
Глюконеогенез происходит у животных, растений, грибов и микроорганизмов. Его реакции одинаковы для всех тканей и биологических видов. Важными предшественниками глюкозы у животных выступают трёхуглеродные соединения, такие как лактат, пируват, глицерол, а также некоторые аминокислоты. У млекопитающих глюконеогенез происходит главным образом в печени, в меньшей степени — в корковом слое почек и эпителиальных клетках, выстилающих тонкую кишку. Образованная в ходе глюконеогенеза глюкоза уходит в кровь, откуда доставляется к другим тканям. После интенсивной физической работы лактат, образовавшийся при анаэробномгликолизе в скелетных мышцах, возвращается в печень и превращается там в глюкозу, которая снова поступает в мышцы или превращается в гликоген (этот круговорот известен как цикл Кори). У проростков растений запасённые в семенижиры и белки превращаются, в том числе и через глюконеогенез, в дисахаридсахарозу, который транспортируется по всему развивающемуся растению. Глюкоза и её производные служат предшественниками для синтеза растительной клеточной стенки, нуклеотидов, коферментов и многих других жизненно важных метаболитов. У многих микроорганизмов глюконеогенез начинается с простых органических соединений, содержащих два или три атома углерода, например, ацетата, лактата и пропионата, которые содержатся в питательной среде[1].
Хотя реакции глюконеогенеза одинаковы у всех организмов, соседние метаболические пути и регуляторные пути глюконеогенеза отличаются у различных видов и в различных тканях[1]. В этой статье рассмотрены особенности глюконеогенеза млекопитающих; о механизмах синтеза глюкозы растениями из первичных продуктов фотосинтеза см. Фотосинтез.
Глюконеогенез и гликолиз не являются полностью идентичными процессами, протекающими в противоположных направлениях, хотя несколько стадий являются общими для обоих процессов: 7 из 10 ферментативных реакций глюконеогенеза обратны соответствующим реакциям гликолиза. Однако 3 реакции гликолиза необратимыin vivo и не могут использоваться в глюконеогенезе: образование глюкозо-6-фосфата из глюкозы под действием ферментагексокиназы, фосфорилированиефруктозо-6-фосфата до фруктозо-1,6-бисфосфатафосфофруктокиназой-1 (PFK-1), а также превращение фосфоенолпирувата в пируват под действием пируваткиназы. В клеточных условиях эти реакции имеют большое отрицательное изменение энергии Гиббса, в то время как другие реакции гликолиза имеют ΔG около 0. При глюконеогенезе три необратимые стадии гликолиза заменены «обходными» реакциями, катализируемыми другими ферментами, и эти реакции также очень экзергоничны и потому необратимы. Таким образом, в клетках как гликолиз, так и глюконеогенез являются необратимыми процессами. У животных гликолиз происходит только в цитозоле, как и большая часть реакций глюконеогенеза, хотя некоторые его реакции происходят в митохондриях и эндоплазматическом ретикулуме[6]. Это даёт возможность для их координированной и взаимно обратной регуляции. Регуляторные механизмы, различающиеся у гликолиза и глюконеогенеза, действуют на ферментативные реакции, уникальные для каждого процесса[1].
Ниже представлена схема реакций глюконеогенеза:
Стадии
Ниже рассмотрены 3 стадии глюконеогенеза, отличные от реакций гликолиза, проведённых в обратном направлении.
Образование фосфоенолпирувата из пирувата
Первой реакцией глюконеогенеза является превращение пирувата в фосфоенолпируват (ФЕП). Эта реакция не может быть обратной пируваткиназной реакции гликолиза, поскольку пируваткиназная реакция имеет большое отрицательное изменение энергии Гиббса и потому необратима в клеточных условиях. Вместо этого фосфорилирование пирувата осуществляется «окольным путём», для реакций которого у эукариот необходимы и цитозольные, и митохондриальные ферменты[8].
Вначале пируват переносится из цитозоля в митохондрии или образуется в митохондриях из аланина путём трансаминирования, при котором α-аминогруппа переносится с аланина на α-кетокарбоновую кислоту. После этого митохондриальный фермент пируваткарбоксилаза[англ.], для активности которой необходим кофермент биотин, превращает пируват в оксалоацетат:
В этой реакции карбоксилирования участвует биотин как переносчик активированного бикарбоната. HCO3- фосфорилируется с затратой ATP с образованием смешанного ангидрида (карбоксифосфата). После этого на место фосфата в карбоксифосфате присоединяется биотин. Справа показан механизм этой реакции[7].
Пируваткарбоксилаза является первым регулируемым ферментом глюконеогенеза, её позитивным эффектором служит ацетил-КоА (ацетил-КоА образуется при β-окислениижирных кислот, повышение его концентрации сигнализирует о доступности жирных кислот как энергетического ресурса). Кроме того, пируваткарбоксилазная реакция поставляет промежуточные соединения в другой центральный метаболический путь — цикл трикарбоновых кислот[7].
Стандартное изменение энергии Гиббса для этой реакции довольно велико, однако при физиологических условиях (среди которых и очень низкая концентрация оксалоацетата) её ΔG ≈ 0, поэтому эта реакция обратима. Митохондриальная малатдегидрогеназа участвует и в глюконеогенезе, и в цикле трикарбоновых кислот, осуществляя и прямую, и обратную реакции[10]. Оксалоацетат может также переноситься из митохондрии в цитозоль после трансаминирования в аспартат[6].
Малат покидает митохондрию через специальный белок-транспортер на внутренней митохондриальной мембране, и в цитозоле он вновь окисляется до оксалоацетата с образованием цитозольного NADH:
После этого оксалоацетат превращается в фосфоенолпируват под действием фосфоенолпируваткарбоксикиназы. В этой Mg2+-зависимой реакции донором фосфорильной группы выступает GTP:
В клеточных условиях эта реакция обратима; образование фосфоенопирувата компенсируется гидролизом другого высокоэнергетичного фосфатсодержащего соединения — GTP[10].
Общее уравнение для двух первых «обходных» реакций гидролиза выглядит следующим образом:
Пируват + ATP + GTP + HCO3- → Фосфоенолпируват + ADP + GDP + Pi + CO2; ΔG'o = 0,9 кДж/моль.
Два высокоэнергетичных фосфатных эквивалента (один от ATP и другой GTP), каждый из которых может дать 50 кДж/моль в клеточных условиях, затрачиваются для фосфорилирования одной молекулы пирувата с образованием фосфоенолпирувата. Однако в соответствующей реакции гликолиза (при образовании пирувата из ФЕП) образуется лишь одна молекула ATP из ADP. Хотя стандартное изменение энергии Гиббса ΔG'o в двухшаговом превращении пирувата в фосфоенолпируват равно 0,9 кДж/моль, реальное изменение энергии Гиббса (ΔG), посчитанное с учётом внутриклеточных концентраций соединений, имеет большое отрицательное значение (—25 кДж/моль). Причиной этого является быстрое использование фосфоенолпирувата в других реакциях, так что его концентрация остаётся относительно низкой. По этой причине образование ФЕП из пирувата под действием глюконеогенетических ферментов в клеточных условиях необратимо[10].
Тот же СО2, который присоединяется к пирувату в ходе пируваткарбоксилазной реакции, выделяется при фосфоенолпируваткарбоксикиназной реакции. Такое карбоксилирование-декарбоксилирование является путём «активации» пирувата, то есть декарбоксилирование оксалоацетата способствует образованию фосфоенолпирувата[10].
Отношение [NADH]/[NAD+] в цитозоле равно 8 × 104, что примерно в 105 раз меньше, чем в митохондриях. Поскольку цитозольный NADH используется в глюконеогенезе (при образовании глицеральдегид-3-фосфата из 1,3-бисфосфоглицерата), биосинтез глюкозы не может происходить, если нет доступного NADH. Транспорт малата из митохондрии в цитозоль и превращение его в оксалоацетат в цитозоле эффективно переносит восстановительные эквиваленты в цитозоль, где их недостаточно. Таким образом, такой путь от пирувата к ФЕП обеспечивает важный баланс между потребляемым и образуемым в цитозоле NADH в ходе глюконеогенеза[10].
Выше отмечалось, что, кроме пирувата, предшественником для глюконеогенеза также может выступать лактат. Этот путь обеспечивает использование лактата, образовавшегося, например, при гликолизе в эритроцитах или в мышцах при анаэробных условиях. Особенно этот путь важен для крупных позвоночных после тяжёлой физической работы. Преобразование лактата в пируват в цитозоле гепатоцитов приводит к образованию NADH, поэтому в экспорте восстановительных эквивалентов (например, малата) из митохондрий здесь нет нужды. После того как пируват, образовавшийся в лактатдегидрогеназной реакции, транспортируется в митохондрии, он превращается в оксалоацетат под действием пируваткарбоксилазы, как писалось выше. Этот оксалоацетат, однако, превращается непосредственно в фосфоенолпируват митохондриальным изоферментом фосфоенолпируваткарбоксикиназой, а ФЕП выводится из митохондрий в цитозоль, где осуществляются дальнейшие реакции глюконеогенеза[11].
У растений и некоторых бактерий было обнаружено два фермента, способных образовывать ФЕП непосредственно из пируватата. К их числу относится фосфоенолпируватсинтаза[англ.] бактерии Escherichia coli. При работе этого фермента его остаток гистидина связывает пирофосфатную группу, взятую от ATP. Далее пирофосфатная группа гидролизуется с выделением фосфата и образованием соединения фермент-His-P. Последний взаимодействует с пируватом, образуя ФЕП. Похожий механизм присущ пируват-фосфатдикиназе[англ.], которая впервые была описана у тропическихзлаков и играет важную роль в С4-фотосинтезе, а также задействована в глюконеогенезе у Acetobacter. Отличие этого фермента от фосфоенолпируватсинтазы заключается лишь в том, что атакующей частицей является не вода, а неорганический фосфат[12].
Образование фруктозо-6-фосфата из фруктозо-1,6-бисфосфата
Второй реакцией гликолиза, которая не может дублироваться обратной реакцией в глюконеогенезе, является фосфорилирование фруктозо-6-фосфата фосфофруктокиназой-1. Так как эта реакция высоко экзергонична и поэтому необратима в клеточных условиях, образование фруктозо-6-фосфата из фруктозо-1,6-бисфосфата катализируется другим ферментом — Mg2+-зависимой фруктозо-1,6-бисфосфатазой-1 (FBPаза-1), которая катализирует необратимый гидролиз фосфата при первом атоме углерода (а не перенос фосфорильной группы на ADP):
Кроме фруктозо-1,6-бисфосфатазы-1 существует фруктозо-1,6-бисфосфатаза-2, выполняющая регуляторные функции[4].
Образование глюкозы из глюкозо-6-фосфата
Третья «обходная» реакция является последней реакцией глюконеогенеза: дефосфорилирование глюкозо-6-фосфата с образованием глюкозы. Если бы гексокиназа осуществляла эту обратную реакцию, то ей бы сопутствовал перенос фосфорильной группы с глюкозо-6-фосфата на ADP с образованием ATP, что энергетически невыгодно. Реакция, катализируемая глюкозо-6-фосфатазой, не включает синтеза ATP и представляет собой простой гидролиз фосфатного эфира:
Этот Mg2+-зависимый фермент встречается на люменальной стороне эндоплазматического ретикулума гепатоцитов, в клетках почек и эпителиальных клетках тонкой кишки, однако в других тканях его нет, поэтому остальные ткани неспособны поставлять глюкозу в кровь. Если бы в них была глюкозо-6-фосфатаза, то она бы гидролизовала глюкозо-6-фосфат, который необходим этим тканям для гликолиза. Глюкоза, образовавшаяся в ходе глюконеогенеза в печени и почках или поглощённая с пищей разносится по кровотоку к этим тканям, в числе которых — мозг и мышцы[4].
Энергетика
Суммарное уравнение биосинтетических реакций глюконеогенеза, приводящих к образованию глюкозы из пирувата, выглядит так:
На каждую молекулу глюкозы, образовавшуюся из пирувата, необходимо 6 высокоэнергетичных фосфатных групп, 4 из которых берутся от ATP и 2 — от GTP. Кроме того, для восстановления двух молекул 1,3-бисфосфоглицерата необходимы 2 молекулы NADH. В то же время для гликолиза нужны лишь 2 молекулы ATP. По этой причине синтез глюкозы из пирувата является затратным процессом. Большая часть затрачиваемой энергии обеспечивает необратимость глюконеогенеза. В клеточных условиях суммарное изменение энергии Гиббса при гликолизе составляет −63 кДж/моль, а при глюконеогенезе — −16 кДж/моль. Таким образом, в клеточных условиях и гликолиз, и глюконеогенез необратимы[13].
Другие предшественники глюкозы
Описанный выше биосинтетический путь образования глюкозы относится к синтезу глюкозы не только из пирувата, но также 4-, 5- и 6-углеродных промежуточных соединений цикла трикарбоновых кислот. Цитрат, изоцитрат, α-кетоглутарат, сукцинил-СоА[англ.], сукцинат, фумарат и малат — все промежуточные продукты цикла трикарбоновых кислот могут окисляться до оксалоацетата. Некоторые или все атомы углерода большей части аминокислот могут быть катаболизированы в пируват или промежуточные соединения цикла трикарбоновых кислот. Поэтому эти аминокислоты могут подвергнуться превращению в глюкозу и называются глюкогенными[англ.]. Аланин и глутамин — важнейшие молекулы, переносящие аминогруппы в печень из других тканей — служат особенно важными глюкогенными аминокислотами у млекопитающих. После того, как эти аминокислоты отдают свои аминогруппы в митохондриях печени, их углеродные скелеты (пируват и α-кетоглутарат соответственно) вовлекаются в глюконеогенез[14]. Аминокислоты образуются при распаде белков мышц и соединительной ткани, их включение в глюконеогенез происходит при продолжительном голодании или длительной физической нагрузке[2].
У растений, дрожжей и многих бактерий имеется путь, позволяющий получать углеводы из жирных кислот — глиоксилатный цикл. У животных ключевых ферментов этого цикла нет, и, ввиду необратимости пируватдегидрогеназной реакции, они не могут получать пируват из ацетил-КоА, а значит, образовывать углеводы из жирных кислот (следовательно, и из липидов). Тем не менее, они могут использовать для глюконеогенеза те небольшие количества глицерола, который образуется при распаде жиров. При этом глицерол фосфорилируется глицеролкиназой[англ.], далее следует окисление центрального атома углерода с образованием дигидроксиацетонфосфата, который является промежуточным соединением глюконеогенеза[14].
Глицеролфосфат является необходимым промежуточным соединением при синтезе жиров (триглицеридов) в адипоцитах, однако эти клетки лишены глицеролкиназы и поэтому не могут осуществлять фосфорилирование глицерола. Вместо этого адипоциты могут осуществлять сокращённый вариант глюконеогенеза, известный как глицеронеогенез: преобразование пирувата в дигидроксиацетонфосфат через первые реакции глюконеогенеза, вслед за которым следует восстановление дигидроксиацетонфосфата до глицеролфосфата[14].
Регуляция
Если бы гликолиз и глюконеогенез протекали одновременно и на большой скорости, то результатом стали бы расход ATP и образование тепла. Например, фосфофруктокиназа-1 и фруктозо-1,6-бисфосфатаза-1 катализируют противоположные реакции:
ATP + фруктозо-6-фосфат → ADP + фруктозо-1,6-бисфосфат (PFK-1)
Фруктозо-1,6-бисфосфат + H2O → фруктозо-6-фосфат + Pi (FBPаза-1).
Суммой этих двух реакций является
ATP + H2O → ADP + Pi + теплота.
Эти две ферментативные реакции, как и ряд других реакций этих двух путей, регулируются аллостерически и ковалентных модификаций. Гликолиз и глюконеогенез регулируются реципрокно, то есть если поток глюкозы, проходящей через гликолиз, растёт, то поток пирувата, проходящего через глюконеогенез, спадает, и наоборот[5]. Например, FBPаза-1 строго подавляется аллостерическим связыванием AMP, так что когда клеточные запасы ATP невелики, а уровень AMP высок, ATP-зависимый синтез глюкозы приостанавливается, а катализирующая соответствующую реакцию гликолиза PFK-1, наоборот, активируется AMP[15]. Хотя PFK-1 активируется фруктозо-2,6-бисфосфатом, на FBPазу-1 это соединение имеет противоположный эффект: он снижает его сродство к субстратам и тем самым замедляет глюконеогенез[16].
Транскрипционные факторы и глюконеогенез
Механизм работы CREB
Механизм работы FOXO1
На пути преобразования пирувата в глюкозу первой контрольной точкой, на которой определяется дальнейшая судьба пирувата в митохондрии, является то, будет ли он превращён в ацетил-КоА пируватдегидрогеназным комплексом с дальнейшим вовлечением в цикл трикарбоновых кислот или же в оксалоацетат под действием пируваткарбоксилазы, чтобы начать глюконеогенез. Когда в качестве источника энергии доступны жирные кислоты, то при их разложении в митохондриях образуется ацетил-КоА, выступающий в качестве сигнала о том, что в дальнейшем окислении глюкозы нет нужды. ацетил-КоА являются положительным аллостерическим модулятором пируваткарбоксилазы и отрицательным модулятором пируватдегидрогеназного комплекса; его действие опосредуется стимуляцией протеинкиназы, которая инактивирует дегидрогеназу. Когда энергетические потребности клетки удовлетворены, окислительное фосфорилирование замедляется, концентрация NADH по сравнению с NAD+ увеличивается, цикл трикарбоновых кислот подавляется, и происходит накопление ацетил-КоА. Повышенная концентрация ацетил-КоА подавляет пируватдегидрогеназный комплекс, тем самым замедляя образование ацетил-КоА из пирувата и стимулируя глюконеогенез через активацию пируваткарбоксилазы, что позволяет превратить излишек пирувата в оксалоацетат (а впоследствии и глюкозу)[17].
Полученный таким образом оксалоацетат превращается в фосфоенолпируват под действием фосфоенолпируваткарбоксикиназы. У млекопитающих регуляция этого важнейшего фермента глюконеогенеза осуществляется на уровне его синтеза и распада под влиянием режима питания и гормональных сигналов. Так, его промотор имеет 15 или более регуляторных элементов, распознаваемых по крайней мере 12-ю известных транскрипционных факторов, и, как предполагается, ещё большим числом пока не описанных. Голодание или высокий уровень глюкагона увеличивают транскрипцию этого фермента и стабилизируют его мРНК. Действие глюкагона опосредовано транскрипционным фактором CREB (англ.cyclic AMP response element binding protein), который активирует синтез глюкозо-6-фосфатазы и фосфоенолпируваткарбоксилазы в ответ на вызванное глюкагоном увеличение внутриклеточной концентрации cAMP. Инсулин или высокое содержание глюкозы в крови имеют противоположный эффект. Эти изменения, вызываемые в основном внеклеточными сигналами (питание, гормоны), могут длиться от нескольких минут до нескольких часов[17]. Инсулин также замедляет экспрессию генов глюкозо-6-фосфатазы и фруктозо-1,6-бисфосфатазы. Другим транскрипционным фактором, регулирующим экспрессию генов ферментов глюконеогенеза, является FOXO1 (англ.forkhead box other). Инсулин активирует протеинкиназу В, которая фосфорилирует FOXO1, находящийся в цитозоле. С фосфорилированным FOXO1 связывается убиквитин, и FOXO1 разрушается в протеасоме, однако в отсутствие фосфорилирования или при дефосфорилировании FOXO1 может проникать в ядро, связываться с соответствующим регуляторным элементом на ДНК и запускать транскрипцию генов фосфоенолпируваткарбоксикиназы и глюкозо-6-фосфатазы. Фосфорилированию FOXO1 протеинкиназой В препятствует глюкагон[18].
Клиническое значение
При снижении использования лактата в качестве субстрата для глюконеогенеза, которое может вызываться дефектом ферментов глюконеогенеза, концентрация лактата в крови повышается, что приводит к понижению pH крови и развитию лактатацидоза. Кратковременный лактатацидоз встречается и у здоровых людей при интенсивной мышечной работе, в этом случае он компенсируется путём гипервентиляции лёгких и ускоренным выведением углекислого газа[19].
На глюконеогенез существенное влияние оказывает этанол. В результате его катаболизма увеличивается количество NADH, что смещает равновесие в лактатдегидрогеназной реакции в сторону образования лактата, снижению образования пирувата и замедлению глюконеогенеза[19].
David E. Metzler. Biochemistry: The Chemical Reactions of Living Cells.. — 2nd edition. — Academic Press, 2003. — Т. 2. — 1973 с. — ISBN 978-0-1249-2541-0.
Arun Kumar Singh Duta Besar India untuk Amerika SerikatMasa jabatan6 Mei 2015 – Agustus 2016 PendahuluSubrahmanyam JaishankarPenggantiNavtej SarnaDuta Besar India untuk PrancisMasa jabatan28 April 2013 – 30 April 2015 PendahuluRakesh SoodPenggantiDr. Mohan KumarWakil Kepala Misi diKedutaan Besar India Washington D.C.Masa jabatanOktober 2008 – April 2013Duta Besar India untuk IsraelMasa jabatanApril 2005 – September 2008 Informasi pribadiPekerjaanDip...
Ford Probe Descrizione generale Costruttore Ford Tipo principale Coupé Produzione dal 1988 al 1997 Sostituisce la Ford EXP Serie Prima generazione 1988-1992Seconda generazione 1993-1997 Sostituita da Ford ZX2 La Ford Probe è una coupé prodotta dalla casa automobilistica statunitense Ford per il mercato nordamericano. Venne introdotta nel 1988 come sostituta della Ford EXP nel segmento delle sportive compatte per terminare la sua produzione nel 1997. Indice 1 I concept 2 Prima g...
Artikel ini bukan mengenai Blue Air. Airblue IATA ICAO Kode panggil PA ABQ AIRBLUE Didirikan2003Mulai beroperasi18 Juni 2004PenghubungBandar Udara Internasional JinnahKota fokusBandar Udara Internasional Allama IqbalBandar Udara Internasional Benazir BhuttoBandar Udara Internasional DubaiProgram penumpang setiaBlue MilesLounge bandaraBlue Lounge International[1]Armada5Tujuan11Perusahaan indukPemerintah PakistanKantor pusatMenara Bursa Efek IslamabadIslamabad, PakistanTokoh utama Tariq...
Cet article concerne la ville de Maidenhead. Pour le système de coordonnées, voir Maidenhead Locator System. Maidenhead Le pont sur la Tamise. Administration Pays Royaume-Uni Nation Angleterre Comté Berkshire Statut Ville Maire Colin Rayner Code postal SL6 Indicatif 01628 Démographie Population 60 000 hab. (2011) Géographie Coordonnées 51° 31′ 18″ nord, 0° 43′ 04″ ouest Localisation Géolocalisation sur la carte : Royaume-Uni M...
Perang TroyaAkhiles membalut luka Patroklos(corak hias sosok-merah pada cawan Atikos, ca. 500 Pramasehi) Perang Medan:Troya (sekarang Hisarlik, Turki) Kurun waktu:Zaman Perunggu Pertanggalan tradisional:ca. 1194–1184 Pramasehi Pertanggalan modern:ca. 1260–1180 Pramasehi Hasil:Kemenangan pihak Yunanikebinasaan Troya Baca juga:Kesejarahan Ilias Sumber sastrawi Ilias Lingkup sastra wiracarita Aeneis, Buku 2 Ifigeneia en Aulidi Filoktetes Aias Troiades Ta Met Homeron Baca juga:Perang Troya da...
Empat dari tujuh anggota grup galaksi HCG 16.[1] Grup galaksi[2][3][4]) adalah kumpulan galaksi yang terdiri dari sekitar 50 atau lebih anggota yang masing-masing terikat oleh ikatan gravitasi, masing-masing memiliki tingkat kecerahan setidaknya sama dengan bima sakti (sekitar 1010 kali Matahari). Kumpulan galaksi yang lebih besar dari grup galaksi disebutgugus galaksi.[5] Grup galaksi dan gugusan galaksi dapat terkelompok, menjadi supergugus galaksi. G...
Building in New York, United States of AmericaThe Church of the Holy FamilyGeneral informationTown or cityStaten Island, New YorkCountryUnited States of AmericaClientRoman Catholic Archdiocese of New York The Church of the Holy Family is a Roman Catholic parish church under the authority of the Roman Catholic Archdiocese of New York, located in Staten Island, New York City. The parish was founded in 1966 and is located at 366 Watchogue Road Westerleigh, Staten Island. References vteRoman Cath...
2011 studio album by Cher LloydSticks + StonesStudio album by Cher LloydReleased4 November 2011 (2011-11-04)Recorded2011Genre Pop pop rap bubblegum pop R&B[1] Length33:47Label Syco Epic Sony Music Producer Toby Gad Jimmy Joker Jukebox Max Martin The Monarch Johnny Powers RedOne The Runners Kevin Rudolf Eric Sanicola Shellback Shakespears Sister Chris Thomas Chris Tek O'Ryan (voc.) Cher Lloyd chronology Sticks + Stones(2011) Sorry I'm Late(2014) Alternative ...
Halaman ini berisi artikel tentang jurnalis Australian. Untuk penembak massal Baton Rouge, lihat Penembakan para perwira polisi Baton Rouge 2016. Gavin LongGavin Long pada Mei 1943Lahir(1901-05-31)31 Mei 1901Foster, VictoriaMeninggal10 Oktober 1968(1968-10-10) (umur 67)Deakin, Teritorial Ibukota AustraliaPenghargaanOfficer of the Order of the British Empire (1953)Salib Emas Ordo Elang (1956)Latar belakang akademisAlma materUniversitas SydneyDipengaruhiCharles BeanKarya akademisLembagaAus...
UK executive agency Maritime and Coastguard AgencyAbbreviationMCALegal statusExecutive agencyPurposeMaritime RegulatorLocationSouthamptonRegion served United Kingdom coastChief ExecutiveVirginia McVea[1]Parent organisationDepartment for TransportWebsitegov.uk/mca The Maritime and Coastguard Agency (MCA) is an executive agency of the United Kingdom that is responsible for implementing British and international maritime law and safety policy. It works to prevent the loss of lives at sea...
Sociological research organization This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If not...
Municipal unit in Dibër, AlbaniaMaqellarëMunicipal unitMaqellarëCoordinates: 41°35′N 20°30′E / 41.583°N 20.500°E / 41.583; 20.500Country AlbaniaCountyDibërMunicipalityDibërPopulation (2011) • Municipal unit10,662Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Maqellarë (Macedonian: Макелари/Makelari or Макеларе/Makelare) is a village and a former municipality in the Dibër County, northeastern Albania. At ...
NASCAR Cup Series race 2021 Bass Pro Shops NRA Night Race Race details[1][2][3][4][5][6] Race 29 of 36 in the 2021 NASCAR Cup Series Date September 18, 2021 (2021-09-18)Location Bristol Motor Speedway in Bristol, TennesseeCourse Permanent racing facility.533 mi (.858 km)Distance 500 laps, 266.5 mi (429 km)Average speed 87.409 miles per hour (140.671 km/h)Pole positionDriver Martin Truex Jr. Joe Gibbs Racing Grid positions set...
Russian ice hockey player (born 1994) Ice hockey player Mikhail Grigorenko Grigorenko with the Buffalo Sabres in 2013Born (1994-05-16) 16 May 1994 (age 30)Khabarovsk, RussiaHeight 6 ft 2 in (188 cm)Weight 209 lb (95 kg; 14 st 13 lb)Position CentreShoots LeftKHL teamFormer teams CSKA MoscowBuffalo SabresColorado AvalancheColumbus Blue JacketsNational team RussiaNHL draft 12th overall, 2012Buffalo SabresPlaying career 2013–present Mikhail Oleg...
British-American animal rights activist Ingrid NewkirkIngrid Newkirk with Little Man, her photographer's chihuahua, during an interview for Wikinews in 2007.BornIngrid Elizabeth Ward (1949-06-11) June 11, 1949 (age 75)Kingston upon Thames, Surrey, England, United KingdomCitizenshipBritish and AmericanOccupation(s)Founder and President of People for the Ethical Treatment of AnimalsSpouse Steve Newkirk (m. 1968; div. 1980)WebsiteOfficial ...
Royal title of Persian origin Shahanshah redirects here. For other uses, see Shah (disambiguation) and Shahanshah (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shah – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) Mohammad Reza Pahl...
Solvent, now banned for ozone depletion 1,1,1-Trichloroethane Skeletal formula of 1,1,1-trichloroethane Space-filling model of 1,1,1-trichloroethane Names Preferred IUPAC name 1,1,1-Trichloroethane Other names 1,1,1-TCA, Methyl chloroform, Chlorothene, Solvent 111, R-140a, Genklene, monochlorethylidene chloride (archaic) Identifiers CAS Number 71-55-6 Y 3D model (JSmol) Interactive image ChEBI CHEBI:36015 Y ChEMBL ChEMBL16080 Y ChemSpider 6042 Y ECHA InfoCard 100.000.688 E...
Tsar Alexander II dari Rusia menyambut Parlemen Finlandia pada 1863. Pidato dari tahta (atau pidato tahta) adalah peristiwa dalam monarki tertentu dimana penguasa yang memerintah, atau perwakilannya, membacakan sebuah pidato kepada para anggota parlemen saat sebuah sesi dibuka, yang menjelaskan agenda pemerintah untuk sesi tersebut. Pidatonya disiapkan oleh para Menteri Mahkota dalam kabinet. Acara tersebut sering kali diadakan tahunan, meskipun di beberapa tempat bisa terjadi lebih atau kura...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) كأس أبطال أوروبا لكرة السلة 1971–72 تفاصيل الموسم الدوري الأوروبي لكرة السلة النسخة 15 المنظم الاتحا�...
Last major outbreak of plague on the islands of Malta and Gozo 1813–1814 Malta plague epidemicHearse used in the 1813 plague, now at the Żabbar Sanctuary Museum DiseasePlagueBacteria strainYersinia pestisLocationMalta and GozoFirst outbreakAlexandria, EgyptArrival date28 March 1813Recovered3,826Deathsc. 4487–4668 VallettaFlorianaManoel IslandBirkirkaraQormiŻebbuġXagħraclass=notpageimage| Map showing the most severe locations of the outbreak The 1813–1814 Malta plague epidemic (Malte...