Астрономо-геодезическая сеть — система связанных между собой опорных точек на земной поверхности, расположенных друг от друга на расстоянии 70—100 км. Построение сети осуществляется астрономическими и геодезическими методами.
В середине XX века с появление высокоточных методов, необходимость в построении триангуляция отпала, однако построение сетей продолжалась методами полигонометрии вплоть до 1991 года.
После 1991 для развития Астрономо-геодезических сетей стали применяться исключительно радио-электронные методы.
Астропункты или Пункт Лапласа
Астрономический пункт (астропункт) — точка поверхности Земли, для которой с помощью астрономических наблюдений определены широта, долгота и азимут направления на земной предмет (обычно это тригонометрический пункт). При определении геодезических данных на Астропунктах, фигуру Земли принимают за некоторый эллипсоид вращения. Несоответствия значений, полученных из астрономических наблюдений и геодезических измерений, характеризуют отступление фигуры Земли от принятого эллипсоида и позволяют определить её реальные размеры и форму.[2]
Кроме обычных астрономических пунктов существуют основные исходные пункты. В них астрономическая долгота определена с повышенной точностью. Эти пункты служат для определения личных инструментальных разностей (ЛИР)[3] наблюдателей.
Пунктом Лапласа называется такой астрономический пункт, в котором широта, долгота и азимут на земной предмет определены как из астрономических наблюдений, так и по геодезическим измерениям, отнесённым к известной системе координат, связанной с земным эллипсоидом Между геодезическим и астрономическим азимутом, широтой и долготой существует зависимость, называется уравнением Лапласа[4]. Так же трактуется понятие пункта Лапласа и в инструктивных документах по геодезии[5] и учебниках[6].
ГОСТ 22268-76 даёт несколько иное определение пункта Лапласа: «геодезический пункт, в котором, по крайней мере, долгота и азимут определены из астрономических наблюдений»[7].
В геодезии
В рядах триангуляции I класса и основных рядах II класса астрономические пункты (пункты Лапласа) располагаются на концах выходных базисных сторон, для их ориентирования, в местах соединения этих рядов. Дополнительные астрономические пункты располагаются вдоль ряда триангуляции через каждых 70-100 км. (на них определяется долгота и широта).
В рядах полигонометрии и трилатерации (поскольку в них базисы не измеряются) пункты Лапласа определяются на концах одной из сторон, в месте соединения рядов. Вдоль ряда также определяются дополнительные астрономические пункты.
В сетях триангуляции, трилатерации и полигонометрии II классов, заполняющих полигон I-го класса, пункты Лапласа определяются также на одной из сторон в центре полигона.
В картографии
В картографии астрономический пункт обозначены на картах условным знаком в виде чёрной пятиконечной звезды с белым кругом по центру и подписаны словом астр. Астрономический пункт совмещенный с геодезическим пунктом (пункт Лапласа) отдельным символом не обозначается.[8].
Астрономо-геодезическая сеть I и II класов
Результаты исследования ЦНИИГАИК на середину XX векв в АГС-I и АГС-II представлена в таблице:
Показатель
АГС - I класса
АГС - II класса
ошибки углов в звеньях
±0,6"
±0,75"
из уравнительных вычислений
±0,75"
±0,79"
Точность базисных (выходных) сторон
1/325 000 - по базисным невязкам
1/345 000 - по координатным невязкам
Точность Азимутов Лапласа
±1,14" - по азимутальным
±1,14" - по координатным
Ошибка геодезической линии соединяющей вершины полигона
АГС-I построена по принципу Крассовского. В последующем для масштабирования сети исходные стороны рядов триангуляции были переопределены с помощью высокоточных светодальномеров[10][11][12].
АГС-II является заполнением полигонов АГС-I, треугольниками с углами более 30 градусов и средней длиной сторон от 7 до 20 км[10][11].
Точность измерений (по результатам последнего уравнивания) в АГС-I и АГС-II представлена в таблице:
Первое уравнивание было произведено в 40-х годах XX столетия и состояли из колоссальных по объему работ по уравниванию общей астрономо-геодезической сети СССР с количеством пунктов — 4733, 87 полигонами и протяженностью порядка 60000 км.
На протяжении 60-х и 70-х годов XX века в соответствии с «Основными положениями ГГС-61» в стране велись основные геодезические работы, было создано 10525 геодезических пунктов, 1480 астрономических пунктов, задействовано и измерено 535 базисов, 1230 азимутов.
Второе уравнивание выполнено в 1991 году как свободной сети[10].
В последнем уравнивании также приняли участие: Космическая, Астрономическая и Доплеровская геодезические сети (служившие основанием для ПЗ-90). Различия составили +25,90 м по оси х (направление Север-Юг), -130,94 м по оси Y (направление Запад-Восток) и по оси Z (высота) -81,76м
ФАГС России
К 1995 году — моменту введения в действие результатов 2-го уравнивания АГС спутниковая группировка ГЛОНАСС насчитывала 24 космических летательных аппаратов[13].
По данным на 2004 ФАГС реализовалась в виде системы закрепленных на всей территории России 50…70 пунктов со средними расстояними между ними 700…800 км[14]
Пункты фундаментальной астрономо-геодезической сети состоят из рабочего центра, основного центра, 2 контрольных центров, 2 нивелирных пунктов и гравиметрического пункта.
Постоянно действующие пункты фундаментальной астрономо-геодезической сети оснащаются оборудованием, позволяющим определять метеопараметры (автоматическая метеостанция) и изменения наклона антенны (инклинометр), а по решению Федеральной службы государственной регистрации, кадастра и картографии — также иным дополнительным оборудованием, включая лазерные дальномеры. При создании постоянно действующих пунктов фундаментальной астрономо-геодезической сети обеспечивается возможность передачи измерительной информации, получаемой при помощи таких пунктов, в режиме реального времени в федеральное бюджетное учреждение, подведомственное Федеральной службе государственной регистрации, кадастра и картографии. На рабочем центре постоянно действующего пункта фундаментальной астрономо-геодезической сети размещается высокоточная многосистемная спутниковая геодезическая аппаратура, выполняющая постоянные определения координат рабочего центра. Количество и место размещения постоянно действующих пунктов фундаментальной астрономо-геодезической сети определяются Министерством экономического развития Российской Федерации.[16]
Периодически определяемый пункт фундаментальной астрономо-геодезической сети может не иметь рабочего центра. Необходимая измерительная аппаратура и дополнительное оборудование размещаются на таком пункте только на определенный период времени.[16]
В 2013 году фундаментальной астрономо-геодезическая сеть (ФАГС) насчитывала — 50 пунктов, из них 33 пункта открытого пользования.[17].
На начало 2017 г. общее количество пунктов ФАГС составило — 61. Они расположены в 52 населенных пунктах, причем в ряде городов находится по 2-3 пункта ФАГС, размещенных нарасстояниях от 12 м до 5 км друг от друга. В действительности функционирует 52 пункта ФАГС. Информация с остальных 34 пунктов ФАГС отсутствует по разным причинам: одни пункты не введены в эксплуатацию, а другие — относятся к категории «периодически определяемых» пунктов.[18].
В 2018 году введены в эксплуатацию 7 новых пунктов ФАГС, один из которых находится на архипелаге Шпицберген (Норвегия).[19].
На пункте ФАГС в обязательном порядке выполняется геометрическим нивелированием не ниже II класса точности и определение ускорений силы тяжести с СКО 5 −7 мкГал. Все пункты ФАГС подразделяются на постоянно действующие и периодически определяемые. Каждый пункт ФАГС оборудован постоянно действующим GNSS-приемником, на каждом из них также определены нормальные высоты и абсолютные значения силы тяжести.[20][19].
Действующие пункты ФАГС
На 1 февраля 2019 ФАГС содержала 38 пунктов Росреестра и 17 РАН и Росстандарта (на 1.02.2019)[19].
№ п/п
NAME
пункт ФАГС
Ведомственная принадлежность
Примечания
1
AST3
Астрахань
Росреестр
вероятно станция Системы дифференциальной коррекции
2
EKTG
Екатеринбург
Росреестр
3
VLDV
Владивосток (Артем)
Росреестр
4
MAG1
Магадан
Росреестр
Инфраструктура СДКМ
5
CNG1
Москва
Росреестр
ЦНИИГАиК
6
NSK1
Новосибирск
Росреестр
в городе расположены 2 станции — 2 ведомств
7
NOYA
Ноябрьск
Росреестр
Инфраструктура СДКМ
8
PULJ
Пулково
Росреестр
Обсерватория + Инфраструктура СДКМ
9
RSTS
Ростов-на-Дону
Росреестр
10
SAMR
Самара
Росреестр
вероятно станция Системы дифференциальной коррекции
11
CHIT
Чита
Росреестр
12
NOVG
Великий Новгород
Росреестр
13
IRKO
Иркутск
Росреестр
в городе расположены 2 — 2 ведомств
14
KLN1
Калининград
Росреестр
вероятно станция Системы дифференциальной коррекции
15
KAGP
Красноярск
Росреестр
Обсерватория + система DORIS
16
NNOV
Нижний Новгород
Росреестр
вероятно станция Системы дифференциальной коррекции
17
OREN
Оренбург
Росреестр
18
PTGK
Пятигорск
Росреестр
19
KHAZ
Хабаровск
Росреестр
в городе расположены 2 станции — 2 ведомств
20
ARKH
Архангельск
Росреестр
вероятно станция Системы дифференциальной коррекции
21
KOTL
Котлас
Росреестр
22
MURM
Мурманск
Росреестр
вероятно станция Системы дифференциальной коррекции
23
TURA
Тура
Росреестр
24
SPB2
Санкт-Петербург
Росреестр
25
BELG
Белгород
Росреестр
26
ZHEL
Железногорск-Илимский
Росреестр
27
OHA1
Оха
Росреестр
28
KIZ1
Кызыл
Росреестр
29
OMSR
Омск
Росреестр
вероятно станция Системы дифференциальной коррекции
30
SLH1
Салехард
Росреестр
31
SEVA
Севастополь
Росреестр
32
TILK
Тиличики
Росреестр
33
BARE
Баренцбург
Росреестр
34
OXTK
Охотск
Росреестр
35
USNR
Усть-Нера
Росреестр
36
MOBJ
Обнинск
Росреестр+РАН
в городе расположены 2 станции — 2 ведомств геофизическая и сейсмологическая обсерватории
В 1957 г. — основана Международной ассоциации морских средств навигации и маячных служб (IALA) с целью объединить морские навигационно-гидрографические службы, производителей средств навигационного оборудования, консультантов, специалистов от научных и учебных заведений из всех регионов мира и предоставить им возможность обмениваться знаниями, сравнить свой опыт и достижения.[21]
Одним из неотъемлемых методов навигации признанной и обязательной IALA, являются Гирокомпосный и Радиоэлектронный Пеленг. Все сертифицированные IALA маяки в обязательном порядке обеспечиваются ККС (контрольно-корректирующими станциями) и обеспечиваются определениями отклонений силы тяжести и относительной высоты. Все маяки в обязательном порядки имеют источники бесперебойное питание и связи, а также сами по себе являются пунктами навигации.
Таким образом все маяки отвечают требования предъявленным к ФАГС.