Земной эллипсоид — эллипсоид вращения, размеры которого подбираются при условии наилучшего соответствия фигуре квазигеоида для Земли в целом (общеземной эллипсоид) или отдельных её частей (референц-эллипсоид).
Поверхность геоида нельзя описать какой-либо математической формулой в связи с тем, что массы внутри Земли распределены неравномерно. Поэтому появилась необходимость создать как можно ближе подходящую к поверхности геоида и математически правильную модель поверхности. Выхода из сложившейся ситуации нашли два:[кто?][когда?] заменить уровненную поверхность Земли на сферу определённого радиуса или принять за такую поверхность эллипсоид. В последнем случае путём сложных геодезических, гравиметрических и астрономических вычислений было установлено, что эллипсоид наиболее точно подходит к математической поверхности геоида.
Размеры земного эллипсоида характеризуются такими величинами, как длины его полуосей a (большая полуось), b (малая полуось) и полярным сжатием α = (a — b)/a.
Земной эллипсоид имеет три основных параметра, любые два из которых однозначно определяют его фигуру:
большая полуось (экваториальный радиус) эллипсоида, a;
малая полуось (полярный радиус), b;
геометрическое (полярное) сжатие, .
Существуют также и другие параметры эллипсоида:
первый эксцентриситет, ;
второй эксцентриситет, .
Для практической реализации земной эллипсоид необходимо ориентировать в теле Земли. При этом выдвигается общее условие: ориентирование должно быть выполнено таким образом, чтобы разности астрономических и геодезических координат были минимальными.
Референц-эллипсоид — приближение формы поверхности Земли (а точнее, геоида) эллипсоидом вращения, используемое для нужд геодезии на некотором участке земной поверхности (территории отдельной страны или нескольких стран). Фигура референц-эллипсоида — это математическая модель поверхности, наилучшим образом подходящая для ограниченной (локальной) территории, определяется длинами полуосей, полярным сжатием эллипсоида и правильным ориентированием в теле Земли.
Как правило, референц-эллипсоиды принимаются для обработки геодезических измерений как наиболее приближенная плоская модель. Практически все референц-эллипсоиды неразрывно связанны с плоскими геодезическими системами координат и являются средствами обеспечения единства измерений. Для закрепления референц-эллипсоида в теле Земли необходимо задать геодезические координатыB0, L0, H0 начального пункта геодезической сети и начальный азимут A0 на соседний пункт. Совокупность этих величин называется исходными геодезическими датами. Таким образом, референц-эллипсоид является переходным моментом между плоскими и сферическими системами координат. С развитием спутниковых систем навигации необходимость в переходном элементе отпала, однако проблема обеспечения единства измерений пока остается актуальной.
Ориентирование референц-эллипсоида в теле Земли подчиняется следующим требованиям:
малая полуось эллипсоида (b) должна быть параллельна оси вращения Земли.
поверхность эллипсоида должна находиться возможно ближе к поверхности геоида в пределах данного региона.
В России осуществляется[когда?] переход на общеземной Международный элипсоид ITRF.
Законодательно в СССР, а затем в России с 1946 по 2012 годы использовалось 3 основных системы координат, основанных на эллипсоиде Красовского — СК-42, СК-63 и СК-95. Постановлением Правительства РФ от 24 ноября 2016 г. N 1240 использование СК-42 и СК-95 допускалось до 1 января 2021 года[1]. Система координат СК-63, основанная на эллипсоиде Красовского, была отменена Постановлением ЦК КПСС и СМ СССР от 25 марта 1987 г.,[источник не указан 262 дня] но в связи с наличием больших архивных фондов пока продолжает использоваться.[источник не указан 262 дня] Вместе с отменой СК-42 и СК-95 вводятся ГСК-2011 и ПЗ-90.11.[источник не указан 262 дня] Таким образом, на территории России будут действовать два эллипсоида и три системы координат: СК-42 (использование не запрещено, обновлению не подлежит), СК-95, основанные на эллипсоиде Красовского, и ГСК-2011, основанная на Международном эллипсоиде.[источник не указан 262 дня] В перспективе ГСК-2011 должна заменить СК-95 и СК-42.[источник не указан 262 дня]
С середины XX века, различными международными организациями предпринимаются попытки введения общеземного эллипсоида
Элипсоид
Год (Эпоха)
Организация
a, м
1/f
IAG-67
1967
6 378 160
298.247 167
WGS-72
1972
6 378 135
298.26
IAU-76
1976
6 378 140
298.257
Общеземной эллипсоид должен быть ориентирован в теле Земли согласно следующим требованиям:
Малая полуось должна совпадать с осью вращения Земли.
Центр эллипсоида должен совпадать с центром масс Земли.
Высоты геоида над эллипсоидом hi (так называемые аномалии высот) должны подчиняться условию наименьших квадратов: .
При ориентировании общеземного эллипсоида в теле Земли (в отличие от референц-эллипсоида) нет необходимости вводить исходные геодезические даты.
Поскольку требования к общеземным эллипсоидам на практике удовлетворяются с некоторыми допусками, а выполнение последнего (3) в полном объёме невозможно, то в геодезии и смежных науках могут использоваться различные реализации эллипсоида, параметры которых очень близки, но не совпадают (см. ниже).
Современные датумы общеземных эллипсоидов и их параметры
(Параметры Земли 1990 года) используется на территории России для геодезического обеспечения орбитальных полетов. Этот эллипсоид применяется в системе спутниковой навигации ГЛОНАСС