Função transcendente

Uma função transcendente (em inglês: transcendental) é uma função a qual não satisfaz uma equação polinomial cujos coeficientes são eles próprios polinomiais. Em outras palavras, uma função é dita transcendente quando ela não pode ser expressa por uma combinação finita de operações algébricas. Por exemplo, a função exponencial é transcendente, pois ela é expressa por uma combinação infinita de potências da variável independente que a expressa.

Uma função de uma variável é transcendente se ela é algebricamente independente desta variável.

Funções transcendentais e algébricas

Para mais detalhes, ver função elementar.

A função logarítmica e a função exponencial são exemplos de funções transcendentes. Função transcendental é um termo frequentemente usado para descrever as funções trigonométricas, como por exemplo, seno, co-seno, tangente, cotangente e secante e cossecante.

Uma função que não é transcendente é dita ser algébrica. Exemplos de funções algébricas são funções racionais e a função raiz quadrada.

A operação de tomada da integral indefinida de uma função algébrica é uma fonte de funções transcendentais. Por exemplo, a função logaritmo origina-se da função recíproca em um esforço de encontrar-se a área de um setor hiperbólico. Então o ângulo hiperbólico e as funções hiperbólicas sinh, cosh, e tanh são todas transcendentais.

Em álgebra diferencial estuda-se como a integração frequentemente cria funções algebricamente independentes de algumas classes tomadas como 'padrão', tais como quando toma-se polinômios com funções trigonométricas como variáveis.

Análise dimensional

Em análise dimensional, funções transcendentais são notáveis porque elas fazem sentido quando seu argumento é adimensional. Por causa disto, funções transcendentais podem ser fonte certa de erros dimensionais. Por exemplo, log(10 m) é uma expressão sem sentido. Poderia se tentar aplicar a identidade logarítmica para ter-se log(10) + log(m), a qual traz luz ao problema: aplicando-se uma operação não algébrica a uma dimensão não cria-se resultados significativos .

Alguns exemplos

Todas as seguintes funções são transcendentais: exceto para alguns poucos casos, não é geralmente possível relacionar o valor, f(x), de qualquer destas funções a sua entrada x por um número finito de operações algébricas.

Referências

Ver também

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Read other articles:

Peta infrastruktur dan tata guna lahan di Komune Anould.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiAnould merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvelle...

 

 

مؤتمر سينيكا فولزمعلومات عامةجانب من جوانب حقوق المرأة سُمِّي باسم Seneca Falls (en) المكان Seneca Falls (en) تاريخ البدء 19 يوليو 1848 تاريخ الانتهاء 20 يوليو 1848 المشاركون إليزابيث كادي ستانتونلوكريشا موتفريدريك دوغلاس لديه جزء أو أجزاء إعلان المشاعر تعديل - تعديل مصدري - تعديل ويكي بيانات ...

 

 

Perang Agama PrancisPenggambaran pembantaian Hari Santo Bartolomeus oleh François DuboisTanggalMaret 1562 – April 1598LokasiPrancisHasil Gencatan senjata yang tidak tenang.Maklumat Nantes memberikan hak-hak untuk Huguenot dalam beberapa hal;Paris dan beberapa wilayah lain dinyatakan sebagai wilayah Katolik secara permanen.Musuh-musuh Prancis tidak berhasil melemahkan Prancis atau merebut wilayahnya.Pihak terlibat Protestan: Huguenot  Inggris Politique Katolik: Liga Katolik Spanyol ...

A Boy Called HPosterSutradaraYasuo FuruhataPemeranYutaka MizutaniRan ItoTatsuki YoshiokaPenata musikYoshihiro IkePerusahaanproduksi Asahi Shimbun Creek & River Co., Ltd. GyaO Hakuhodo DY Media Partners Hokkaido Television Broadcasting Kobe Shimbun Kyushu Asahi Broadcasting Kodansha Nagoya Broadcasting Network TV Asahi Toho Trysome [1] DistributorToho[2]Tanggal rilis 10 Agustus 2013 (2013-08-10) Durasi122 menitNegaraJepangBahasaJepangPendapatankotorUS$15.3 juta (...

 

 

1937 film by George Marshall Can This Be Dixie?Directed byGeorge MarshallWritten byGeorge MarshallLamar TrottiProduced bySol M. WurtzelStarringJane WithersSlim SummervilleHelen WoodThomas BeckSara HadenClaude GillingwaterDonald CookCinematographyBert GlennonErnest PalmerEdited byLouis R. LoefflerMusic byEmil GerstenbergerJoe GloverSamuel KaylinGene RoseDistributed by20th Century FoxRelease date November 13, 1936 (1936-11-13) Running time70 minutesCountryUnited StatesLanguageEng...

 

 

German curler Peder LedosquetCurler ♂TeamCurling clubEC Oberstdorf, OberstdorfCurling career Member Association GermanyWorld Championshipappearances2 (1971, 1972) Medal record Curling World Championships 1972 Garmisch-Partenkirchen Peder Ledosquet is a former German curler. He is a 1972 World Men's bronze medallist.[1][2] Teams Season Skip Third Second Lead Events 1970–71 Manfred Räderer Peter Jacoby Peder Ledosquet Hansjörg Jacoby WCC 1971 (6th) 1971–72 ...

Legally binding document establishing rights and duties between parties For other uses, see Contract (disambiguation). Kill fee redirects here. For the novel by Barbara Paul, see Kill Fee. For the American martial arts film, see Ulterior Motives. Contract law Formation Capacity Offer and acceptance Meeting of the minds2 Abstraction principle4,5 Posting rule1 Mirror image rule Invitation to treat Firm offer Consideration1,4 Implication-in-fact Collateral contract Defences Misrepresentation Mis...

 

 

Former monument in Virginia, US Jefferson Davis Memorial(2013)Artiststatues: Edward ValentineYear1907 (1907)[1]: 12 Mediumstatues: bronzeDimensionsDoric column: 67 feet (20 m) tallColonnade: 50 feet (15 m) tallConditionwhole monument removedLocationRichmond, Virginia, U.S.Coordinates37°33′31″N 77°28′04″W / 37.5586°N 77.4678°W / 37.5586; -77.4678 The Jefferson Davis Memorial was a memorial for Jefferson Davis (1808–18...

 

 

Untuk pengertian limit secara umum dalam matematika, lihat Limit (matematika).Limit barisan keliling segibanyak segi-n beraturan yang melilit bagian luar lingkaran satuan sama dengan keliling lingkaran, yaitu 2 π r {\displaystyle 2\pi r} . Barisan keliling segibanyak beraturan yang menyinggung bagian dalam lingkaran pun menuju limit yang sama. n n sin(1/n) 1 0.841471 2 0.958851 ... 10 0.998334 ... 100 0.999983 Semakin bilangan bulat positif n {\displaystyle n} membesar tanpa batas...

County in Missouri, United States County in MissouriCole CountyCountyThe Cole County Courthouse in Jefferson City SealLocation within the U.S. state of MissouriMissouri's location within the U.S.Coordinates: 38°31′N 92°17′W / 38.51°N 92.28°W / 38.51; -92.28Country United StatesState MissouriFounded1820Named forStephen ColeSeatJefferson CityLargest cityJefferson CityArea • Total402 sq mi (1,040 km2) • Land394 ...

 

 

Disambiguazione – Se stai cercando l'EP dei Pošlaja Molli, vedi Paycheck (EP). PaycheckTitoli di testaLingua originaleinglese Paese di produzioneStati Uniti d'America Anno2003 Durata119 min Generefantascienza, azione, thriller RegiaJohn Woo SoggettoPhilip K. Dick (dall'omonimo racconto) SceneggiaturaDean Georgaris ProduttoreJohn Woo, Terence Chang, John Davis, Michael Hackett Produttore esecutivoStratton Leopold, David Solomon Casa di produzioneDreamWorks Pictures, Paramount Pictu...

 

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

Italian prelate of the Catholic Church (born 1964) His EminenceAugusto Paolo LojudiceCardinal, Archbishop of Siena-Colle di Val d'Elsa-MontalcinoChurchCatholic ChurchArchdioceseSiena-Colle di Val d'Elsa-MontalcinoSeeSiena-Colle di Val d'Elsa MontalcinoAppointed6 May 2019Installed16 June 2019PredecessorAntonio BuoncristianiOther post(s)Cardinal-Priest of Santa Maria del Buon Consiglio (2020-)OrdersOrdination6 May 1989by Ugo PolettiConsecration23 May 2015by Agostino ValliniCreated car...

 

 

Disney media franchise based on fairy tale by Jeanne-Marie Leprince de Beaumont Beauty and the BeastThe official promotional logo of the franchise, used since the 1991 original film.Created byWalt Disney Animation StudiosOriginal workBeauty and the Beast (1991)OwnerThe Walt Disney CompanyYears1991–presentBased onBeauty and the Beastby Gabrielle-Suzanne de VilleneuveFilms and televisionFilm(s) Beauty and the Beast (1991; animated) Beauty and the Beast (2017; live-action) Television seriesSin...

 

 

Japanese manga series and its adaptation This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cleopatra DC – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this message) Cleopatra D.C.Cover art for the Cleopatra DC DVD releaseクレオパトラD.C(Kureopatora D.C.)GenreAdven...

تحتاج هذه المقالة كاملةً أو أجزاءً منها لإعادة الكتابة حسبَ أسلوب ويكيبيديا. فضلًا، ساهم بإعادة كتابتها لتتوافق معه. (أكتوبر 2015) كشف للعمليات العسكرية في العراق من جانب الائتلاف بقيادة الولايات المتحدة خلال حرب الخليج الثالثة، وضحاياها من المدنيين.[1][2][3] عملي�...

 

 

Der Mond ist aufgegangen, illustration by Ludwig Richter (1856) Der Mond ist aufgegangen (German for The moon has risen) is a German lullaby and evening song by Matthias Claudius, one of the most popular in German literature. Also known under the name Abendlied (German for evening song) it was first released in Musen-Almanach in 1779, published by Johann Heinrich Voß.[1] In 1783, Claudius published the poem with a modification to verse six in Asmus omnia sua secum portans oder Sämmt...

 

 

English cricket club and former governing body Cricket team Marylebone Cricket ClubTeam informationFounded1787; 237 years ago (1787)Home groundLord's Cricket GroundOfficial websitelords.org/mcc Marylebone Cricket Club (MCC) is a cricket club founded in 1787 and based since 1814 at Lord's Cricket Ground, which it owns, in St John's Wood, London.[1] The club, formerly the governing body of cricket, retains considerable global influence. In 1788, the MCC took responsibi...

Formula for temperature dependence of rates of chemical reactions In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and reverse reactions. This equation has ...

 

 

Бомбардировка ШалиЧасть Первой чеченской войны 43°09′ с. ш. 45°54′ в. д.HGЯO Место нападения Шали Цель нападения Рынок, больница, кладбище, школа, колхоз Дата 3 января 1995 Способ нападения Бомбардировка Оружие Военные самолёты, кассетные бомбы Погибшие не менее 55 чел�...