W 1820 Hans Ørsted odkrył oddziaływanie „konfliktu elektrycznego” na magnesy. Wkrótce potem Jean-Baptiste Biot i Félix Savart ustalili eksperymentalnie, że prostoliniowy przewód z prądem działa na biegun magnesu siłą (Ørsted tego terminu nie użył) w kierunku prostopadłym do kierunku prądu i najkrótszego odcinka łączącego biegun z przewodem i maleje odwrotnie proporcjonalnie do odległości między nimi.
W 1820 André Ampère odkrył siłę działającą między przewodnikami z prądem i sformułował prawo określające wartość siły między dwoma elementami prądów. Siły te miały być centralne, czyli działać między elementami prądów wzdłuż łączącej je linii, być proporcjonalne do natężeń prądów i zależeć od kątów między elementami i między elementami a łączącym je odcinkiem. Ampère określił tę dziedzinę badań mianem elektrodynamiki.
W 1845 Wilhelm Weber podsumował odkrycia Ampère’a, Faradaya i innych w postaci prawa, zgodnie z którym siła między ciałami naelektryzowanymi jest proporcjonalna do iloczynu ładunków i odwrotnie proporcjonalna do kwadratu odległości między nimi (jak mówi prawo Coulomba), ale zależy też od ich wzajemnych prędkości i przyspieszenia. Do lat 80. XIX w. była to najczęściej akceptowana teoria elektryczności i magnetyzmu.
W 1855 James Clerk Maxwell odrzucił teorię Webera, gdyż uważał ją za niezgodną z prawem zachowania energii (mylił się). Uznał, inspirowany uwagami Faradaya o liniach sił, że siły elektryczne i magnetyczne działają za pośrednictwem ośrodka wypełniającego całą przestrzeń (kilka lat później określił go mianem eteru). W 1856, w II części On Faraday’s Lines of Force, przekładając znane prawa elektrodynamiki, wyrażone w terminach sił, na język pól, zapisał niektóre z równań znane dziś jako równania Maxwella. Jedno z nich głosiło, mówiąc jakościowo, że wokół prądu elektrycznego powstaje wirowe pole magnetyczne. Drugie, że zmienne pole magnetyczne wytwarza wirowe pole elektryczne.
W 1862, w III części On Physical Lines of Force, Maxwell dodał do pierwszego z wymienionych praw wyrażenie na prąd przesunięcia (co wiązało się z hipotezą, że eter jest ciałem sprężystym). Pokazał, że z tak zmodyfikowanego prawa i prawa zachowania ładunku wynika prawo Coulomba. Zaraz dalej obliczył, na podstawie wyników elektrycznych i magnetycznych pomiarów Webera i Kohlrauscha (nie mających nic wspólnego z optyką), że w eterze powinny powstawać fale rozchodzące się z prędkością 310 700 km/s, podczas gdy pomiary prędkości światła dokonane przez Armand Fizeau dały wartość 315 000 km/s. W obliczu takiej zgodności Maxwell stwierdzał: „trudno nam uniknąć wniosku, że światło polega na poprzecznych drganiach tego samego ośrodka, który stanowi przyczynę zjawisk elektrycznych i magnetycznych”.
W 1865 w A Dynamical Theory of Electromagnetic Field Maxwell zebrał rozproszone w wymienionych artykułach równania w układ dwudziestu równań z dwudziestoma zmiennymi. Zmniejszył ich liczbę w A Treatise on Electricity and Magnetism (1873) używając notacji wektorowej, ale nadal było ich osiem, zapisanych w postaci bardzo nieprzejrzystej. W 1865 pokazał – dla składowej magnetycznej – że z jego równań wynika równanie falowe, a fale magnetyczne są zawsze poprzeczne (tak jak fale świetlne) i rozchodzą się z prędkością taką, z jaką rozchodzi się światło.
W 1870 Hermann von Helmholtz sformułował własną teorię elektromagnetyzmu, łącząc idee Webera i Maxwella. W 1879 Berlińska Akademia Nauk ogłosiła konkurs na eksperymentalne rozstrzygnięcie, który z systemów elektrodynamiki jest prawdziwy.
Oliver Heaviside w 1885 roku uprościł matematyczny formalizm Maxwella i zapisał jego równania w formie znanej z dzisiejszych podręczników (bez div D = 4πρ).
W 1887 uczeń Helmholtza, Heinrich Hertz, wykorzystując wcześniejsze badania nad rozładowaniem butelki lejdejskiej, zdołał wytworzyć i odebrać fale radiowe. Okazało się, że są one zawsze poprzeczne – a zatem rację miał Maxwell. Od tej pory mało wcześniej popularne równania Maxwella szybko zyskują powszechną akceptację.
Całka po dowolnej krzywej zamkniętej (cyrkulacja) z natężenia pola elektrycznego jest równa minus pochodnej po czasie (szybkości zmian) strumienia pola magnetycznego przez dowolną powierzchnię rozpiętą na tej krzywej[4].
Prawo Gaussa wiąże strumień pola elektrycznego z ładunkiem wytwarzającym to pole:
rozpisując wyrażenie na strumień pola elektrycznego
gdzie:
– strumień pola elektrycznego przez dowolną powierzchnię zamkniętą
– całkowity ładunek zawarty wewnątrz tej powierzchni.
Strumień pola elektrycznego przez dowolną powierzchnię zamkniętą przemnożony przez przenikalność elektryczną ośrodka jest równy całkowitemu ładunkowi zawartemu wewnątrz tej powierzchni[6].
Prawo to stwierdza, że pole magnetyczne jest bezźródłowe – nie istnieją ładunki magnetyczne:
rozpisując wyrażenie na strumień pola magnetycznego:
gdzie:
– strumień pola magnetycznego przez dowolną powierzchnię zamkniętą
Całkowity strumień indukcji magnetycznej przechodzący przez dowolną powierzchnię zamkniętą równa się zeru[7].
Postać różniczkowa
Równania Maxwella w postaci całkowej wiążą pole elektryczne i magnetyczne na rozciągłych krzywych i powierzchniach. Przechodząc do granicy małych wymiarów można otrzymać je w postaci różniczkowej, wiążącej pole elektryczne i magnetyczne w każdym punkcie przestrzeni. Formalnie najprościej przechodzić pomiędzy postaciami różniczkowymi i całkowymi, wykorzystując twierdzenia Stokesa oraz Gaussa-Ostrogradskiego.
Prawo indukcji elektromagnetycznej Faradaya
W obszarze, w którym istnieje zmienne pole magnetyczne, powstaje pole elektryczne[8]:
Równania Maxwella formułuje się wtedy, wydzielając z ładunku tak zwany ładunek swobodny, nie uwzględniający ładunków będących rezultatem polaryzacji dielektryka, a z prądów odpowiednio „prąd ładunków swobodnych” nie uwzględniający prądu polaryzacji. Równania Maxwella przyjmują postać[12]:
Postać różniczkowa
Postać całkowa
Sens fizyczny
1. Prawo indukcji elektromagnetycznej Faradaya
Zmienne w czasie pole magnetyczne wytwarza pole elektryczne.
2. Prawo Ampère’a rozszerzone przez Maxwella
gdzie – gęstość prądu ładunków swobodnych.
gdzie – strumień indukcji elektrycznej przez dowolną powierzchnię rozpiętą na konturze – prąd ładunków swobodnych przepływających przez tę powierzchnię.
Przepływający prąd oraz zmienne pole elektryczne wytwarzają pole magnetyczne.
3. Prawo Gaussa dla elektryczności
gdzie – gęstość ładunku swobodnego.
gdzie – strumień indukcji elektrycznej przez dowolną powierzchnię zamkniętą; – ładunek swobodny zawarty wewnątrz tej powierzchni.
Ładunki są źródłem pola elektrycznego.
4. Prawo Gaussa dla magnetyzmu
Pole magnetyczne jest bezźródłowe.
W układzie CGS
Układ jednostek CGS jednoznacznie definiuje jednostki mechaniczne, natomiast istnieje kilka konwencji uzupełniania go o jednostki elektrodynamiczne. W każdym z takich przypadków równania Maxwella będzie zapisywało się nieco inaczej (najpopularniejszy jest układ CGS Gaussa)[13].
W ogólnym przypadku przenikalność elektryczna i magnetyczna jest tensorem, czasami zależnymi od natężenia pola elektrycznego i indukcji magnetycznej. Ale w większości przypadków materiały są izotropowe wówczas i są skalarami (liczbami), wówczas równania Maxwella przyjmują uproszczoną postać.
W próżni
Próżnia jest ośrodkiem liniowym, izotropowym. Przenikalność elektryczną próżni oznacza się przez a przenikalność magnetyczną próżni przez W próżni nie ma ładunków i nie płynie prąd Wówczas równania Maxwella upraszczają się do postaci:
Z równań tych wynika, że w próżni zmieniające się pole elektryczne wywołuje zmienne wirowe pole magnetyczne, a zmieniające się pole magnetyczne wywołuje zmienne wirowe pole elektryczne. Zmiany te w postaci fali elektromagnetycznej rozchodzą się z prędkością
Prędkość tę, mimo że dotyczy wszystkich fal elektromagnetycznych, nazywa się prędkością światła.
↑Wielkości te nie wprowadzają żadnego nowego sensu fizycznego, są używane głównie z przyczyn historycznych, mogą prowadzić do nieporozumień i błędów. Feynman, Leighton i Sands 1974 ↓, s. 210–212; Purcell 1971 ↓, s. 224, 385–386.