Nowoczesna genetyka stara się zrozumieć proces dziedziczenia, a za jej prekursora uważa się niemiecko-czeskiego zakonnika i naukowca Grzegorza Mendla, który w 1866 po raz pierwszy opisał podstawowe prawa dziedziczenia cech[1]. Rezultaty prac Mendla nie były rozumiane do czasu jego śmierci, kiedy to inni naukowcy, pracujący nad podobnymi zagadnieniami ponownie odkryli jego badania[2]. Po ponownym odkryciu jego prac, naukowcy starali się określić, które molekuły w komórkach były odpowiedzialne za dziedziczenie. W 1910Thomas Hunt Morgan, bazując na obserwacjach udowodnił, że geny mają związek z chromosomami[3]. W 1913 jego student – Alfred Sturtevant użył fenomenu genetycznego łączenia, aby pokazać, że geny są rozmieszczone liniowo na chromosomach[4].
Pomimo iż było jasne, że geny egzystują w chromosomach, a chromosomy składają się z białek (zasadowych histonów, które są integralną częścią nukleosomów, tworzących włókna chromatynowe) i DNA, uczeni nie wiedzieli, które elementy są odpowiedzialne za dziedziczenie. W 1928Frederick Griffith odkrył fenomen transformacji, a mianowicie, iż martwa bakteria mogła przenieść materiał genetyczny, aby „przetransformować” inną wciąż żyjącą bakterię. 16 lat później w 1944Oswald Theodore Avery, Colin McLeod i Maclyn McCarty zidentyfikował molekułę, odpowiedzialną za transformację – DNA. Eksperyment przeprowadzony w 1952 przez Hershey–Chase także pokazał, że DNA jest materiałem genetycznym wirusów, które zarażają bakterie, dostarczając dalszych dowodów, że DNA jest molekułą odpowiedzialną za dziedziczenie[5].
James D. Watson i Francis Crick określili strukturę DNA w 1953 przy użyciu pracy krystalografii promieniami X Rosalindy Franklin, która wskazywała, że DNA ma strukturę spiralną (w formie korkociagu)[6][7]. Ich model podwójnej helisy ma dwa włókna DNA. Ta struktura pokazywała, że informacja genetyczna istnieje w sekwencji nukleotydów na każdym włóknie DNA i sugerowała łatwą metodę dla duplikacji: jeśli włókna są oddzielone, nowe włókna mogą być zrekonstruowane na podstawie sekwencji starych włókien.
Pomimo iż struktura DNA wskazywała na to, jak funkcjonuje dziedziczenie, w dalszym ciągu nie wiadomo było, jak DNA wpływa na zachowanie komórek. W kolejnych latach naukowcy próbowali zrozumieć, jak DNA kontroluje proces produkcji białek. Odkryto, że komórki używają DNA, jako szablonu do tworzenia nici RNA (molekuły z nukleoidami, bardzo podobnej do DNA) w procesie zwanym transkrypcją. Sekwencja nukleotydowa nici RNA jest używana w celu tworzenia sekwencji aminokwasów w białku w procesie translacji. Przekład między nukleotydami, a sekwencjami aminokwasów w białku jest znany, jako kod genetyczny.
W 1977Frederick Sanger odkrył terminację łańcucha sekwencjonowania DNA. Ta technologia pozwala naukowcom czytać sekwencje nukleotydową cząsteczki DNA[8]. W 1983 Kary Banks Mullis odkrył reakcje łańcucha polimerazy, dostarczając łatwy sposób do izolacji i wzmocnienia specyficznej sekcji DNA z mieszanki[9]. Dzięki wspólnemu wysiłkowi w ramach projektu Human Genome Project i jednoczesnych wysiłków Celera Genomics, te oraz inne badania osiągnęły szczyt w sekwencjonowaniu ludzkiego genomu w 2003[10].
Molekularną podstawą genów jest kwas deoksyrybonukleinowy (DNA). DNA jest zbudowane z łańcucha nukleotydów, które dzielą się na cztery rodzaje: adenina (A), cytozyna (C), guanina (G), tymina (T). Informacja genetyczna znajduje się w sekwencji tych nukleotydów i geny egzystują jako odcinki sekwencji wzdłuż pierścienia DNA[11]. Wirusy są jedynym wyjątkiem tej zasady – czasem wirusy wykorzystują uproszczoną w budowie cząsteczkę RNA zamiast DNA jako ich materiał genetyczny[12]. Według jednej z klasycznych zasad genetyki molekularnej informacja genetyczna powinna płynąć w jednym kierunku: od DNA do RNA (transkrypcja). Zasadę tę łamie enzym występujący w genomie retrowirusów (np. HIV) – odwrotna transkryptaza, która pozwala tworzyć nowe kopie RNA na matrycy istniejącego RNA oraz przepisywanie materiału genetycznego wirusa w postaci RNA na DNA gospodarza (czyli odwrotny kierunek transkrypcji)[13].
Zazwyczaj DNA występuje jako cząsteczka o podwójnym włóknie skręcona w kształt podwójnej spirali. Każdy nukleotyd w DNA specjalnie pasuje do drugiego nukleotydu po drugiej stronie: A pasują do T, a C pasują do G. Tak więc w formie z dwoma włóknami każde włókno zawiera wszystkie niezbędne informacje. Taka struktura DNA jest fizyczną bazą dziedziczności: replika DNA kopiuje informację genetyczną poprzez rozszczepienie włókien i użycie każdego włókna jako szablon do syntezy nowego włókna[14].
Geny są umieszczone wzdłuż długich łańcuchów sekwencji DNA zwanymi chromosomami. U bakterii każda komórka ma pojedynczy okrężny chromosom, podczas gdy DNA organizmów eukariotycznych (zarówno roślin, jak i zwierząt) jest umieszczone w wielu podłużnych chromosomach. Takie nici DNA są często bardzo długie. Dla przykładu najdłuższy ludzki chromosom ma długość ok. 247 milionów par zasad[15]. DNA chromosomu jest połączone z proteinami strukturalnymi, które organizują, ściskają i kontrolują dostęp do DNA tworząc materiał zwany chromatyną. U eukariotów zazwyczaj tworzy on nukleosomy, powtarzając jednostki DNA pozwijane dookoła jądra protein histonowych[16]. Pełny zestaw materiału genetycznego organizmu (zazwyczaj związane sekwencje DNA wszystkich chromosomów) jest nazywany genomem[17].
Podczas gdy organizmy haploidalne mają tylko jedną kopię każdego chromosomu, większość zwierząt i wiele roślin są diploidalne i zawierają dwa chromosomy i zatem dwie kopie każdego genu[18]. Dwa allele dla genu znajdują się w identycznym miejscu jak chromatyda siostrzana, każda allela dziedziczona po oddzielnym rodzicu.
Wyjątek pojawia się w sześciu chromosomach. U wielu zwierząt rozwinęły się wyspecjalizowane chromosomy, które odgrywają rolę w określeniu płci organizmu[19]. U ludzi i innych ssaków chromosom Y ma bardzo mało genów i inicjuje rozwój męskich cech seksualnych, podczas gdy chromosom X jest podobny do innych chromosomów i posiada wiele genów niezwiązanych z determinacją płci. Żeńskie mają dwie kopie chromosomów X, męskie mają jedno Y i tylko jeden chromosom X – ta różnica w liczbie kopii chromosomu X prowadzi do nienaturalnej formy dziedzicznych zaburzeń sprzężonych z płcią.
Niektóre wyjątki od klasycznych zasad genetyki molekularnej
Jedną z podstawowych zasad genetyki molekularnej jest założenie, iż biokatalizatoramireakcji chemicznych zachodzących w komórce (enzymami) są zawsze cząsteczki białka. Regułę tą łamie rybozym (występuje u bakterii, eukariontów i wirusów), ponieważ jest to cząsteczka RNA, która może katalizować wycięcie określonego fragmentu samej siebie lub innej cząsteczki RNA. Przykładem jest jedna z cząsteczek rRNA (rybosomowego RNA) orzęskaTetrahymena pyriformis, która wycina z samej siebie część zbędną (intron)[13].
Polimeraza RNA zależna od RNA to enzym, który pozwala tworzyć nowe kopie RNA na matrycy istniejącego RNA. Występuje on w genomie RNA-wirusów, do których należą retrowirusy. Łamie on zasadę, że informacja genetyczna „powinna” płynąć w jednym kierunku: od DNA do RNA[13].
Zakodowanie polipeptydów, zawierających łącznie N aminokwasów „powinno” wymagać DNA o długości przynajmniej 3N par zasad. To kolejna podstawowa reguła genetyki molekularnej, która wynika z cechy kodu genetycznego: kod genetyczny jest niezachodzący. Jednak u niektórych wirusów, np. fag ΦX174 oraz w niektórych genach w mitochondriach – geny nachodzą na siebie. Fragmenty genomu odczytywane są dwukrotnie, z przesunięciem fazy odczytu o 1 lub 2 nukleotydy, co daje zupełnie różne białka i pozwala silnie upakować genom[13].
Kod genetyczny jest zdeterminowany, czyli odpowiednia sekwencja DNA „powinna” jednoznacznie wyznaczać sekwencję aminokwasów w białku. Podczas transkrypcji zachodzącej w jądrze komórkowym informacja genetyczna jest przepisywana z DNA na mRNA. Jednak w czasie procesu redagowania RNA (u eukariontów) w mRNA (informacyjnym RNA) pewne nukleotydy mogą zostać zamienione na inne, co jest odstępstwem od wyżej wymienionej zasady, a zarazem cechy kodu genetycznego[13].
Sekwencja aminokwasów w peptydzie „powinna” być zakodowana w DNA, a synteza białek odbywać się na matrycy RNA w rybosomach. Zasady tej jednak nie trzymają się krótkie polipeptydy u niektórych bakterii, np. Bacillus brevis. Pewne polipeptydy są syntetyzowane u nich wprost z aminokwasów przez specjalne kompleksy enzymatyczne, dotyczy to np. antybiotykugramicydyny[13].
↑Moore JA. Thomas Hunt Morgan–The Geneticist. „American Zoologist”. 4 (23), s. 855–865, 1983. DOI: 10.1093/icb/23.4.855.
↑Sturtevant AH. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. „Journal of Experimental Biology”, s. 43–59, 1913.
↑Avery OT, MacLeod CM, and McCarty M. Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III. „Journal of Experimental Medicine”. 1 (79), s. 137–158, 1944. DOI: 10.1084/jem.79.2.137.
↑Sanger F., Nicklen S., Coulson AR. DNA sequencing with chain-terminating inhibitors. „Proceedings of the National Academy of Sciences of the United States of America”. 12 (74), s. 5463–5467, grudzień 1977. PMID: 271968.
↑Saiki RK., Scharf S., Faloona F., Mullis KB., Horn GT., Erlich HA., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. „Science (New York, N.Y.)”. 4732 (230), s. 1350–1354, grudzień 1985. PMID: 2999980.
↑H. Pearson. Genetics: what is a gene?. „Nature”. 441 (7092), s. 398–401, May 2006. DOI: 10.1038/441398a. PMID: 16724031.
↑Lansing ML.M.PrescottLansing ML.M., Microbiology, John PJ.P.Harley, Donald A.D.A.Klein, wyd. 2nd ed, Dubuque, IA: Wm. C. Brown Publishers, 1993, ISBN 0-697-01372-3, OCLC27302868. Brak numerów stron w książce
↑ abS.B. Prusiner. Novel proteinaceous infectious particles cause scrapie. „Science”. 216 (4542), s. 136–144, 1982. DOI: 10.1126/science.6801762. PMID: 6801762.
↑Collinge J., Whitfield J., McKintosh E., Beck J., Mead S., Thomas DJ., Alpers MP. Kuru in the 21st century--an acquired human prion disease with very long incubation periods. „Lancet”. 9528 (367), s. 2068–2074, czerwiec 2006. DOI: 10.1016/S0140-6736(06)68930-7. PMID: 16798390.