2 Przyboczny Pułk Huzarów im. Królowej Prus Wiktorii
|
Read other articles:
У этого термина существуют и другие значения, см. Чёрная армия. Чёрная армиявенг. Fekete sereg, лат. Legio nigra Варианты знамени Чёрной армии[a] Годы существования 1458—1494 Страна Королевство Венгрия Подчинение король Матьяш I Тип сухопутные и морские части Включает в себя п�...
Blake RossLahir12 Juni 1985 (umur 38)Miami, Florida Blake Ross (lahir 12 Juni 1985) adalah seorang pengembang perangkat lunak yang dikenal menciptakan Mozilla, fasilitas penjelajah internet.[1] Lahir di Miami, Florida. Ia membuat website pertamanya pada saat berumur 10 tahun[2] Dan ia menjadi seorang kontraktor Netscape pada usia 15 tahun.[3].[4] Blake Aaron Ross kuliah di Universitas Standvord pada tahun 2003 di mana setahun kemudian ia mengembangkan Moz...
Untuk Kecamatan yang bernama Laweyan, lihat pula Laweyan, Surakarta.. LaweyanKelurahan Kantor kelurahan LaweyanPeta lokasi Kelurahan LaweyanNegara IndonesiaProvinsiJawa TengahKotaSurakartaKecamatanLaweyanKode Kemendagri33.72.01.1002 Kode BPS3372010002 Kelurahan Laweyan (Jawa: ꦭꦮꦶꦪꦤ꧀, translit. Lawiyan) adalah kelurahan di Kecamatan Laweyan, Surakarta. Kelurahan ini memiliki kode pos 57148. Pada tahun 2020, kelurahan ini berpenduduk 2.124 jiwa. Kelurahan ini ber...
Capital of the Emirate of Ajman, United Arab Emirates This article is about the city. For the eponymous Emirate, see Emirate of Ajman. For other uses, see Ajman (disambiguation). City in Emirate of Ajman, United Arab EmiratesAjman عجمانCityClockwise from top: Aerial view of Ajman, Corniche Mosque, Ajman beach, Street in Ajman, Ajman Fort Museum FlagCoat of armsWordmarkAjmanLocation of Ajman in the UAEShow map of United Arab EmiratesAjmanLocation within the Persian GulfShow map of Persian...
Diagram QAPF untuk klasifikasi Batuan Plutonik Diagram QAPF adalah diagram segitiga bolak balik yang digunakan untuk mengklasifikasikan batuan beku berdasarkan komposisi mineralogi. Akronimnya, QAPF, merupakan kependekan dari Kuarsa, Alkali Feldspar, Plagioklas, dan Feldspathoid (Foid) , yang merupakan grup-grup mineral yang digunakan untuk klasifikasi dalam Diagram ini. Persentase Q, A, P, dan F dinormalisasi ( dihitung ulang agar totalnya 100%) Sejarah Diagram QAPF dibuat oleh International...
Human settlement in WalesLlanbisterLlanbisterLocation within PowysPopulation382 (2011)OS grid referenceSO111733CommunityLlanbisterPrincipal areaPowysPreserved countyPowysCountryWalesSovereign stateUnited KingdomPost townLLANDRINDOD WELLSPostcode districtLD1Dialling code01597PoliceDyfed-PowysFireMid and West WalesAmbulanceWelsh UK ParliamentBrecon & RadnorshireSenedd Cymru – Welsh ParliamentBrecon and Radnorshire List of places UK Wales Powys 52°...
Upazila in Khulna, BangladeshDamurhuda দামুড়হুদাUpazilaCarew and Co. Distillery, DarshanaCoordinates: 23°37′N 88°47′E / 23.617°N 88.783°E / 23.617; 88.783Country BangladeshDivisionKhulnaDistrictChuadangaArea • Total311.92 km2 (120.43 sq mi)Population (2011) • Total289,577 • Density930/km2 (2,400/sq mi)Time zoneUTC+6 (BST)Websitedamurhuda.chuadanga.gov.bd Damurhuda (Bengali: �...
Clothing company 2007-08 Clothkits baby dress, red. Clothkits is an English clothing and craft company, based in Chichester, West Sussex who sell kit clothing, dressmaking kits, haberdashery, sewing machines and all manner of other sewing supplies. In addition to this bricks and mortar retail outlet, the company have a large online business, and teach dressmaking classes from their contemporary sewing studio. Clothkits specialize in selling colourful pre-printed kit clothing for children and ...
Vous lisez un « article de qualité » labellisé en 2016. Le château des Rohan de Saverne a été, de 1890 à 1918, le siège du 99e régiment d'infanterie prussien[a 1],[a 2]. L'incident de Saverne ou l'affaire de Saverne (en allemand : Zabern-Affäre, plus rarement Fall Zabern) est une crise politique intérieure qui a secoué l'Empire allemand fin 1913, à la veille de la Première Guerre mondiale. La crise s'est produite lorsqu'un sous-lieutenant stationné à Save...
Andrew Fernando HolmesBorn(1797-03-17)March 17, 1797Cadiz, SpainDiedOctober 9, 1860(1860-10-09) (aged 63)Montreal, Canada EastOccupation(s)physician, professor, college administrator, author, and scientistKnown forone of founders of the Montreal Medical Institution Andrew Fernando Holmes (March 17, 1797 – October 9, 1860) was a Canadian physician, academic, and one of the founders of the Montreal Medical Institution, the first medical school in Canada. In 1797, Holmes' parents, Th...
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Title III of the Patriot Act – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and when to remove this message) Patriot Act Titles Title I: Enhancing Domestic Security against Terrorism Title II: Enhanced Surveillance Procedures Title III: International Money Laundering Abatement and ...
Pour les articles homonymes, voir privilège. Cet article est une ébauche concernant l’histoire. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (novembre 2018). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du th�...
Former organized incorporated territory of the United States (1854–1867) Territory of NebraskaOrganized incorporated territory of the United States1854–1867CapitalOmaha • TypeOrganized incorporated territory History • Kansas–Nebraska Act May 30, 1854• Colorado Territory formed February 28, 1861• Dakota Territory formed March 2, 1861• Idaho Territory formed March 3, 1863• Statehood March 1, 1867 Preceded by Succeeded by Unorganized terr...
Pour les articles homonymes, voir Nocturne. Cet article est une ébauche concernant la fantasy et une collection. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Logo La Collection Nocturne est une nouvelle collection des éditions Harlequin qui a pris, en partie, le relais de la collection Luna en janvier 2010. La Collection Nocturne a pour thème, presque exclusivement, la Bit lit. Deux nouveaux romans paraiss...
Diacritic (^) in European scripts This article is about the diacritic used to modify other characters. For use as an independent, spacing character, see Caret (proofreading) and Caret (computing). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Circumflex – news · newspapers · books · scholar · JSTOR (Januar...
Geometric figure The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation x 2 − y 2 = 1. {\displaystyle x^{2}-y^{2}=1.} In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length r = x 2 − y 2 . {\displaystyle r={\sqrt {x^{2}-y^{2}}}.} Whereas the unit circle surrounds its center, the un...
Merit-based science academy This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The World Academy of Sciences – news · newspapers · books · scholar · JSTOR (March 2024) (Learn how and when to remove this message) The World Academy of SciencesAbbreviationTWASFormation1983; 41 years ago (1983)Typ...
本日は大安なり著者 辻村深月イラスト さやか[要曖昧さ回避]発行日 2011年2月25日発行元 角川書店国 日本言語 日本語形態 四六判ページ数 332コード ISBN 978-4-04-874174-3 ウィキポータル 文学 [ ウィキデータ項目を編集 ]テンプレートを表示 『本日は大安なり』(ほんじつはたいあんなり)は、辻村深月による日本の小説、及びそれを原作とする2012年のテレビドラマ。 �...
Lie groups and Lie algebras Classical groups General linear GL(n) Special linear SL(n) Orthogonal O(n) Special orthogonal SO(n) Unitary U(n) Special unitary SU(n) Symplectic Sp(n) Simple Lie groups Classical An Bn Cn Dn Exceptional G2 F4 E6 E7 E8 Other Lie groups Circle Lorentz Poincaré Conformal group Diffeomorphism Loop Euclidean Lie algebras Lie group–Lie algebra correspondence Exponential map Adjoint representation Killing formIndex Simple Lie algebra Loop algebra Affine Lie algebra Se...
1939 picture book by Ingri and Edgar Parin d'Aulaire Abraham Lincoln AuthorIngri and Edgar Parin d'AulaireIllustratorIngri and Edgar Parin d'AulaireGenreChildren's picture bookPublisherDoubleday Beautiful Feet Books, Inc.(2015)Publication date1939Publication placeUnited StatesPages64ISBN9781893103603 Abraham Lincoln is a biography written and illustrated by Ingri and Edgar Parin d'Aulaire about Abraham Lincoln. Originally published by Doubleday, it was the recipient of the Caldecott Medal for...