Vannkraft som begrep omfatter all bruk av strømmende vann, fortrinnsvis i elver og fosser, til mekanisk arbeid på stedet eller oftest omformet til elektrisitet. I begge tilfelle innebærer det at man utnytter det energipotensiale som vann innehar i en høyde over havet på grunn av jordklodens gravitasjonskraft. Vannkraft forutsetter at strømmende vann ledes mot et vannhjul eller en vannturbin. Ofte blir vannet i en elv eller et vassdrag samlet opp og magasinert ved oppdemming, dermed kan produksjonen gjøres uavhengig av vannstrømningen i øyeblikket. Anlegg som omsetter vannfall til energi, kalles vannkraftverk. Energiproduksjon ved vannkraft utnytter den del av vannets kretsløp som har å gjøre med vann på landjorden (som innsjøer, breer, grunnvann, elver), og er dermed en evigvarende energikilde. Vannkraft har det laveste klimagassutslippet, den høyeste virkningsgraden og den lengste levetiden av alle teknikker for kraftproduksjon.[1]
Fallenergi transformeres til roterende kinetisk energi via et hjul med skovler, enten det er en kvernkall, et vannhjul eller en moderne vannturbin. Den roterende akslingen kan koples til tekniske innretninger som kverner, møller, sager (opprinnelig oppgangssag og senere sirkelsag), stampemøller med mere. Moderne bruk omfatter praktisk talt kun tilknyting til en elektrisk generator.
Mekanisk utnyttelse av vannkraft innebærer at energien må utnyttes på stedet eller innen umiddelbar nærhet av vannfallet, mens elektrisk energi kan transporteres via kraftlinjer over store avstander. Før denne muligheten for transmisjon av energi over lange avstander kom, ble vannkraft i enkelte tilfeller overført over større avstander via trykkluft eller trykkrørledninger der såkalte vannmotorer ble benyttet.
Verdens totale elektriske energiproduksjon fra vannkraft utgjorde i 2014 ca 16,6 %, eller 3875 TWh, og i tiden 1965-2010 var den årlige økningen på 2,5 %. I Norge er en meget stor del av den elektriske kraftproduksjonen fra vannkraft (98 %), men det finnes land i verden med inntil 100 % av sin elektrisitetsproduksjon fra vannkraft.[2]
Selv om vannkraft er en evigvarende energikilde som praktisk talt ikke gir forurensning, kan vannkraft føre med seg miljøulemper av forskjellig art og omfang. Bortsett fra å gi skjemmende inngrep i vassdraget (store konstruksjoner som demninger, redusert vannføring eller helt tørrlagte elver, reguleringssoner i dammer, massedeponier, veier, etc.) kan fiske, dyre- og planteliv påvirkes, landområder settes under vann og samt andre negative konsekvenser. En viss risiko er også tilknyttet brudd på dammer eller rør, og ødeleggelser som dette kan gi.
Vannkraftutbygging kan også gi fordeler ved at flom kan unngås eller reduseres.
Historie
Den første utnyttelsen av vannkraft var ved vannhjul som ble drevet rundt av kraften i det rennende vannet, enten ved såkalt undervann eller overvann, det siste utnyttet gjerne et mindre vannfall. En aksel koblet til vannhjulet drev så en mølle eller vannhjulet løftet vann fra elven over i en irrigasjonskanal. Andre tidlige utnyttelser av vannkraft var til sagbruk og som vannpumper i gruver hvor sinnrike mekaniske innretninger kunne overføre den mekaniske energien over begrensede områder. Eksempler på tidlig industri basert på vannkraft fant man langs Akerselven i 1800-tallets Christiania og i gruvene på Kongsberg og Røros.
Med oppfinnelsen av den elektromagnetiske generatoren i 1831 ble det mulig å omdanne den mekaniske energien i vannkraften til elektrisk energi som kunne overføres over noe lengre avstander. Men på grunn av store tap ved overføring over større avstander var det inntil 1950-tallet vanlig å plassere den kraftkrevende bedriften nær kraftkilden, som f.eks. i Rjukan og Sauda.
Verdens vannkraftproduksjon og potensial
I verden ble det i 2015 produsert rundt 3 875 TWh fra vannkraft, noe som utgjorde 16,6 % av den totale elektriske energiproduksjonen.
Til sammenligning utgjorde elektrisk produksjon fra kjernekraft 12,8 %, mens produksjon fra andre fornybare energikilder (som vind, sol, geotermisk) utgjorde 3,6 %. Tabellen viser de største produksjonslandene og tall for enten 2013 eller 2014, med angivelse av både total årsproduksjon (TWh), vannkraftens produksjonsandel (%), installert anleggseffekt (GW), og endelig landets teoretiske og tekniske potensial (TWh).
Følgende land med høy andel fra vannkraft er Albania, DR Kongo, Mosambik, Nepal, Paraguay, Tadsjikistan og Zambia, som alle kommer nær 100 % av elektrisk energiproduksjon fra vannkraft. Andre land med et stort bidrag er Brasil, Etiopia, Georgia, Kirgisistan og Namibia, der mer enn 80 % av elektrisk energiproduksjonen kommer fra vannkraft. Det er 35 land i verden som produserer mer enn halvparten av sin elektrisitetsproduksjon fra vannkraft. Produksjonskapasiteten (total installert effekt) for vannkraft i verden økte med gjennomsnittlig 2,5 % per år fra 1965 til slutten av 2010.[2]
Andelen av vannkraft i Norge fra elektrisitetsproduksjon, - er på godt over 95 % av produsert elektrisk energi. Det fører til at Norge er blant landene i verden med størst andel av elektrisitetsproduksjon fra vannkraft.
Norge har 17 utenlandsforbindelser for kraft, inkludert fire utenlandskabler til Danmark, én til Nederland (Norned), én til Tyskland (Nordlink) og én til Storbritannia (North Sea Link).[11]
Den første større ledningsforbindelsen med det svenske sentralnettet ble satt i drift fra Sør-Trøndelag i 1960, og var basert på en spesiell avtale mellom landene.[12]
De ulike regionenes, og vassdragenes vannkraftpotensial betegner hvor mye kraftproduksjon man kunne tenkes å hente ut ved «full» utbygging. Dette kan beregnes matematisk som teoretisk potensial, det vil si største tenkelige produsert mengde vannkraft utfra vassdragenes vannmengder og fallhøyder, i tråd med fysikkens lover (se nedenfor). Mer interessant er vannkraftens tekniske potensial, det vil si den potensielle produksjonen når man også tar hensyn til ingeniørmessige begrensninger, begrensninger i plasseringen av produksjonsanleggene, begrensninger i nedbørsmengder, osv. Endelig er det mulig å beregne vannkraftens økonomiske potensial, som også tar hensyn til geologiske, miljømessige, og markedsmessige begrensninger.[13]UNDP anslo på 2000-tallet at teoretisk potensial var 40 500 TWh, mens teknisk potensial var 14 500 TWh og økonomisk potensial minst 8 100 TWh. Total faktisk årsproduksjon i år 2000 var på 2 675 TWh elektrisk kraft på verdensbasis, mens produksjonen i 2013 var økt til 3 874 TWh.[14]
Metoder for vassdragsregulering for kraftproduksjon
Der V er samlet vannvolum pr. år [m3] og de andre faktorene de samme som i uttrykket over.
Av dette ser en at det blir vesentlig for en kraftregulering å både få nyttiggjort en så stor vannmengde som mulig og samtidig stor fallhøyde. Kraftutbyggeren er derfor interessert i å få tilgang til mest mulig av det aktuelle nedbørfeltet. Jo lenger ned i vassdraget inntaksmagasinet plasseres desto større vannmengde og vanngjennomstrømning (slukeevne) kan oppnås. Lavt plasserte inntaktsmagasin gir imidlertid liten fallhøyde. Motsatt vil en kraftstasjon plassert ved havnivå og inntak plassert høyt oppe i vassdraget gi stor fallhøyde, men liten vannmengde. Best mulig utnyttelse av et vassdrag til kraftproduksjon må balansere disse to størrelsene. En løsning kan være å plassere flere kraftverk etter hverandre langs vassdraget. Ofte vil det være en kompleks og komplisert teknisk/økonomisk optimalisering bak valg av plassering av damer, overføringstunnel og kraftstasjoner i et vassdrag. Vannføringen i elvene er enten målt eller beregnet flere steder, topologien kartlagt og kostnadene for hvert enkelt tiltak beregnet, og ut fra dette kan mange alternative vannkraftutbygginger beregnes. Rentenivå, fremtidig energipris og avdragstid vil også være parametre for denne analysen. Inntektene av prosjektet sier noe om samfunnsnytten, og denne skal igjen veies opp mot ulempene.
Jevnest mulig energiproduksjon gir best utnyttelse av den investerte kapital. Vannføringen i et vassdrag varierer med årstidene, og vil også være avhengig av hvordan vann lagres i snø og jordsmonn. Et nedbørfelt som ligger i høyfjellet, er lite og bratt, eller inneholder mye stein og grus, vil bli en typisk flomelv. Derimot vil en elv fra et stort flatt områder med store innsjøer, myrer og dypt jordsmonn gi jevnere vannføring[15].
En demning danner en kunstig innsjø og om det er mulig å variere vannvolumet kalles dette for et reguleringsmagasin. I et slikt magasin kan vann lagres og tappes kontrollert ned til kraftstasjonen. Typisk vil magasinene fylles opp i perioder med mye nedbør. Vanligvis fylles norske magasiner både om høsten og sent på våren ved snøsmelting. Tapping av reguleringsdammen skjer i perioder med stort energibehov, som typisk er om vinteren, samtidig er det normalt lite tilsig om vinteren. Reguleringsmagasinene er energilagre i det elektriske kraftsystemet. Det øverste tillatte vannivået kalles høyeste regulerte vannstand (HRV) og nederst nivå kalles lavest regulert vannstand (LRV).
Vannkraft har svært store investeringskostnader, omtrent som for kjernekraft, men gir langvarige inntekter. For energiproduksjon i kull-, kjerne- og gasskraftverk er det løpende kostnader for energikilden, mens vannkraft ikke har noen løpende kostnader knyttet til selve energikilden. De løpende kostnadene til drift av et vannkraftverk er meget små i forhold til inntektene av energisalg. Levetiden for et vannkraftanlegg er også meget lang.[16].
Behov for store dammer og kraftoverføringer
Fordi nedbør og elektrisitetsbehov kan variere mellom regioner vil det være behov for å overføre strøm over store avstander. Dette krever kraftlinjer med stor kapasitet som kan overføre elektrisitet fra områder med overskudd (stor magasinfylling) til områder med liten magasinfylling og/eller begrensede vannkraftressurser.
Kompliserte reguleringer
Kraftverk er ofte plassert rett ved vassdraget som er regulert, slik at vannet strømmer tilbake i elva etter å ha gått gjennom turbinen. Mellom inntaksmagasinet og kraftverket blir det lite vann i elva (restvannføring) eller elva blir helt tørrlagt. Konsesjonen som er gitt for utbyggingen gir bestemmelser for dette. Nærliggende vann kan også bli oppdemt og vannet overført i tunneler til inntaksmagasinet. Vann fra nabovassdrag kan også overføres i lange tunneler, noen ganger ved bruk av pumper. Ved bekkeinntak renner vann fra mindre elver rett ned i en kanal for å bli overført til magasin. Slike kraftutbygginger kan være svært omfattende med tunneler på mange kilometer. Den skjematiske fremstillingen til høyre viser dette for en større kraftutbygging i Sveits. Aller enklest kraftutbygginger er det når kraftverket og inntaksdammen er i samme konstruksjon eller står svært nært hverandre, slik det er vanlig i elvekraftverk. Noen eksempler er Hooverdammen i USA og Alta kraftverk i Finnmark.
Miljøkonsekvenser av vannkraftutbygging
Nedbryting av organisk materiale ved første gangs oppdemming
Ved første gangs oppdemning vil skog og annen biomasse bli satt under vann, om det ikke hugges vekk før vannfyllingen tar til. Biomasse vil kreve oksygen ved nedbryting og i en slik kunstig innsjø vil det bli underskudd på oksygen og kjemiske prosesser som danner dihydrogensulfid (H2S) kan starte. Et ekstremt tilfelle er Tucuruí-demningen i Brasil; her ble knapt noen av trærne som ble satt under vann fjernet før første gangs oppdemning. Før dammen ble bygget var det en skog på syv ganger Mjøsas areal, og ved fylling av magasinet ble det dannet så store mengder dihydrogensulfid at dette fikk alvorlige miljømessige følger. Det ble store luktproblemer i elva nedenfor kraftverket, korrosjon i turbiner og andre stålkonstruksjoner.[17]
Kulturlandskap settes under vann
Ved oppdemning av et landområde eller en dal vil naturligvis landområder bli ubrukelige for de aktivitetene som tidligere var mulig. Et omfattende tilfelle er byggingen av i Tucuruí-demningen i Brasil der 3 000 familier og over 280 000 dyr ble flyttet for å forsøke å redde noe av dyrelivet.[17]