Nikotinamida adenina dinukleotida fosfat
Nikotinamida adenina dinukleotida fosfat
|
Pengecam
|
|
|
|
|
ChEBI
|
|
ChEMBL
|
|
ChemSpider
|
|
ECHA InfoCard
|
100.000.163
|
MeSH
|
NADP
|
|
|
UNII
|
|
InChI=1S/C21H28N7O17P3/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(44-46(33,34)35)14(30)11(43-21)6-41-48(38,39)45-47(36,37)40-5-10-13(29)15(31)20(42-10)27-3-1-2-9(4-27)18(23)32/h1-4,7-8,10-11,13-16,20-21,29-31H,5-6H2,(H7-,22,23,24,25,32,33,34,35,36,37,38,39)/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1 YKey: XJLXINKUBYWONI-NNYOXOHSSA-N YInChI=1/C21H28N7O17P3/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(44-46(33,34)35)14(30)11(43-21)6-41-48(38,39)45-47(36,37)40-5-10-13(29)15(31)20(42-10)27-3-1-2-9(4-27)18(23)32/h1-4,7-8,10-11,13-16,20-21,29-31H,5-6H2,(H7-,22,23,24,25,32,33,34,35,36,37,38,39)/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1 Key: XJLXINKUBYWONI-NNYOXOHSBN
|
O=C(N)c1ccc[n+](c1)[C@H]2[C@H](O)[C@H](O)[C@H](O2)COP([O-])(=O)OP(=O)(O)OC[C@H]3O[C@@H](n4cnc5c4ncnc5N)[C@@H]([C@@H]3O)OP(=O)(O)O
|
Sifat
|
|
C21H29N7O17P3
|
Jisim molar
|
744.42 g·mol−1
|
Kecuali jika dinyatakan sebaliknya, data diberikan untuk bahan-bahan dalam keadaan piawainya (pada 25 °C [77 °F], 100 kPa).
|
Y pengesahan (apa yang perlu: Y/N?)
|
Rujukan kotak info
|
|
|
Nikotinamida adenina dinukleotida fosfat, disingkat NADP+ atau dalam notasi lama TPN (trifosfopiridina nukleotida), ialah kofaktor yang digunakan dalam tindak balas anabolik, seperti kitaran Calvin dan sintesis lipid dan asid nukleik, yang memerlukan NADPH sebagai agen penurunan ("sumber hidrogen"). Ia digunakan oleh semua bentuk kehidupan sel.[1]
NADPH ialah bentuk NADP+ yang diturunkan. NADP+ berbeza daripada NAD+ dengan kehadiran kumpulan fosfat tambahan pada kedudukan 2' cincin ribosa yang membawa bahagian adenina. Fosfat tambahan ini ditambah oleh NAD+ kinase dan dibuang oleh NADP + fosfatase.[2]
Biosintesis
NADP+
Secara umum, NADP+ disintesis sebelum NADPH. Tindak balas sedemikian biasanya bermula dengan NAD+ dari sama ada secara de novo atau laluan penyelamat, dengan NAD+ kinase menambah kumpulan fosfat tambahan. ADP-ribosil siklase membolehkan sintesis daripada nikotinamida dalam laluan penyelamat, dan NADP+ fosfatase boleh menukar NADPH kembali kepada NADH untuk mengekalkan keseimbangan.[1] Beberapa bentuk NAD+ kinase, terutamanya dalam mitokondria, juga boleh menerima NADH untuk mengubahnya terus menjadi NADPH.[3][4] Laluan prokariotik kurang difahami, tetapi dengan semua protein yang serupa, prosesnya harus berfungsi dengan cara yang sama.[1]
NADPH
NADPH dihasilkan daripada NADP+. Sumber utama NADPH dalam haiwan dan organisma bukan fotosintetik lain ialah laluan pentosa fosfat, yakni oleh glukosa-6-fosfat dehidrogenase (G6PDH) dalam langkah pertama. Laluan pentosa fosfat juga menghasilkan pentosa, satu lagi bahagian penting NAD(P)H, daripada glukosa. Sesetengah bakteria juga menggunakan G6PDH bagi laluan Entner-Doudoroff, tetapi pengeluaran NADPH kekal sama. [1]
Fungsi
NADPH menyediakan persamaan penurunan, biasanya atom hidrogen, dalam tindak balas biosintetik dan penurunan-pengoksidaan yang terlibat dalam melindungi daripada ketoksikan spesies oksigen reaktif (ROS), membenarkan penjanaan semula glutation (GSH).[5] NADPH juga digunakan dalam laluan anabolik, seperti sintesis kolesterol, steroid,[6] asid askorbik,[6] xilitol, [6] asid lemak sitosol[6] dan pemanjangan rantai asid lemak mikrosomal.
Sistem NADPH juga bertanggungjawab untuk menghasilkan radikal bebas dalam sel imun oleh NADPH oksidase. Radikal ini digunakan untuk memusnahkan patogen dalam proses yang dipanggil letupan respirasi.[7] Ia merupakan sumber penurunan setara untuk hidroksilasi sitokrom P450 bagi sebatian aromatik, steroid, alkohol dan dadah.
Kestabilan
NADH dan NADPH adalah sangat stabil dalam larutan bes, tetapi NAD+ dan NADP+ terurai dalam larutan sebegini, menjadi produk pendarfluor yang boleh digunakan dalam pengkuantitian. Sebaliknya, NADPH dan NADH terdegradasi oleh larutan berasid manakala NAD+/NADP+ agak stabil dalam asid.[8]
Rujukan
|
|