Densitas distributionis normalis (curva campanae forma Gaussiana) et deviatio canonica. Color caeruleus opacus congruit erroribus a valore medio exspectato μ intra unam deviationem canonicam σ, probabilitate 68.3 %; caeruleus opacus plus caeruleus medianus, erroribus intra duas deviationes canonicas, probabilitate 95.4%; caeruleus opacus plus medianus plus clarus, erroribus intra tres deviationes, probabilitate 99.7 %.
Cum deviationem canonicam quadratam designat, quae variantia quoque appellatur; modo mathematico haec distributio etiam symbolo describitur. Variabile fortuitum sic distributum deinde repraesentatur
Distributio normalis canonica et usus eius ad functionem distributivam calculandam
Distributio normalis canonica dicitur distributio cuius valor medius exspectatus est 0 cuiusque deviatio canonica est 1. Densitas probabilistica huius distributionis est
cuius valores in multis tabellis statisticis inspici possunt.
In parametrorum et quorumlibet casu, quaequam functio distributiva normalis ad eam canonicam reduci potest per formulam
Theorema limitis centralis
Distributio normalis est maximi momenti in mathematica ob Theorema limitis centralis, quod dicit ad distributionem normalem tendere omnes distributiones de rebus quae quantitates independentes fortuitas summant vel quae earum valores medios aestimant, si conditiones certae, quae variantias pertinent, valent. Cum numeri elementi conlati in summa sunt maiores, distributio normalis accuratius approximat.
Proprietates parametrorum
Parametrum designat centrum distributionis normalis. Densitas distributionis probabilistica duo puncta inflexionis ad habet.
Exemplum historicum:Carolus Fridericus Gauss in angulos metiendo versatus est, quod in pristina scida pecuniae pretio decem marcarum Germanicarum videri potest. Mensiones erroribus subiectae erant, ut Gauss valorem medium plurium mensionum eiusdem anguli calcularet. Ad excusandum valore medio usum errores normaliter distributos esse obtinuit, quia sub hac distributione valorem medium esse aestimatorem efficientem scivit. Haec adsumptio etiam hodie in multis analysibus statisticis facta est.
Curva quae distributionem normalem describit etiam curva errorum vocatur.
Postremae duae mensurae distributioni normali sic aptatae sunt, ut valores canonicos 0 et 1 habeant. Postrema mensura, fornix, rationabilior est, quia potentiae in mensura quarti momenti pares sunt, ut valores negativos adsumere non possint. Valores excessus, , iacent in , contra valores fornicis, , in iacent.
↑M. Bachmaier et V. Guiard, "An alternative and generalized measure for the kurtosis and its advantages," Statistical Papers 41 (2000), pp. 37–52. Berolini, Heidelbergae, Novi Eboraci: Springer.