삼각 함수

사인 함수와 코사인 함수

수학에서 삼각 함수(三角函數, 영어: trigonometric functions, angle functions, circular functions 또는 goniometric functions)는 의 크기를 삼각비로 나타내는 함수이다. 즉, 삼각형의 각도와 변의 길이의 관계를 나타낸 것이다. 예각 삼각 함수는 직각 삼각형예각에 직각 삼각형의 두 변의 길이의 비를 대응시킨다. 임의의 각의 삼각 함수 역시 정의할 수 있다. 삼각 함수는 복소수의 지수 함수의 실수 · 허수 부분이며, 따라서 복소수를 다룰 때 핵심적인 역할을 한다. 가장 근본적인 주기 함수이며, 각종 주기적 현상을 다룰 때 푸리에 급수의 형태로 등장한다.

삼각 함수에는 3개의 기본적인 함수가 있으며, 이들은 사인(영어: sine, 문화어: 시누스, 기호 ) · 코사인(영어: cosine, 문화어: 코시누스, 기호 ) · 탄젠트(영어: tangent, 문화어: 탕겐스, 기호 )라고 한다. 이들의 역수는 각각 코시컨트(영어: cosecant, 기호 ) · 시컨트(영어: secant, 기호 ) · 코탄젠트(영어: cotangent, 기호 )라고 한다.

정의

직각 삼각형을 통한 정의

직각 삼각형

C가 직각인 삼각형 ABC에서, 각 A, B, C의 대변(마주보는 변)의 길이를 라고 할 때, 사인, 코사인, 탄젠트의 정의는 다음과 같다.

사인:
코사인:
탄젠트:

또한, 코시컨트, 시컨트, 코탄젠트는 위 세 함수의 역수가 되며, 다음과 같이 정의한다.

코시컨트:
시컨트:
코탄젠트:

단위원을 통한 정의

삼각 함수

좌표평면에서 원점을 중심으로 하고 반지름 r의 길이가 1인 원을 단위원이라고 한다. 이 단위원 위의 점 A 에 대해, 축과 점 A와 원점을 잇는 직선간의 각을 라고 하면, 다음과 같이 정의한다.

복소 삼각 함수

오일러의 공식 를 대입하면,

를 대입하면,

연립하여 풀면, 쌍곡선함수,

성질

주기성과 특이점

사인 · 코사인 · 코시컨트 · 시컨트는 주기가 주기함수이다. 즉, 임의의 복소수 에 대하여,

탄젠트 · 코탄젠트는 주기가 주기함수이다. 즉, 임의의 복소수 에 대하여,

사인코사인은 실수선 위에서 해석함수이며, 복소 평면 위에서 정칙함수이다. 이들은 복소 무한대 에서 본질적 특이점을 갖는다.[1][2]

탄젠트는 실수선의 ()에서 정의되지 않는다.

특별한 값

단위원 위의 각 점의 좌표

특별한 에서의 삼각 함수의 값은 다음과 같다.

(라디안)
특수각 sin cos tan
(0˚)
(30˚)
(45˚)
(60˚)
(90˚) 정의되지 않음
0º , 90º sin, cos, tan

부호

각 사분면에 따른 삼각 함수의 부호는 다음과 같다.

사분면  sin과 csc   cos과 sec   tan와 cot 
I + + +
II +
III +
IV +

항등식

삼각 함수 사이에는 많은 항등식이 존재한다. 그중 가장 자주 쓰이는 것은 피타고라스 항등식으로, 어떤 각에 대해서도 사인의 제곱과 코사인의 제곱의 합은 1이다. 이는 반지름의 길이가 인 빗변이고 밑변이 의 대변인 높이 에 대하여 를 만족한다는 피타고라스의 정리로 설명할 수 있다. 이를 삼각 함수로 나타내면 다음과 같다.

이것은 다음과 같다.

따라서, 이것은 또한 단위원에서 다음과 같다.

삼각 함수의 덧셈정리

서로 다른 삼각 함수의 관계는 삼각 함수의 덧셈 정리이다. 두 각의 합과 차의 사인과 코사인은 x, y에 대한 사인과 코사인으로 구할 수 있다. 이는 제2 코사인 법칙두 점 사이의 거리 공식을 연립해 유도할 수 있고, 제1 코사인 법칙사인 법칙을 연립해 유도할 수 있고, 오일러의 공식을 이용해 유도할 수도 있다.

(복부호 동순)

두 각의 크기가 같을 경우에는 덧셈정리를 간단하게 배각공식을 이용할 수 있다.

모든 삼각 함수는 다른 삼각 함수를 사용하여 다음과 같이 나타낼 수 있다.

  sin cos tan cot sec csc
sin
cos
tan
cot
sec
csc

미분과 적분

다음은 6개의 기본 삼각 함수에 대한 도함수와 부정적분이다.

함수 도함수 부정적분

응용

사인 법칙

사인 법칙은 임의의 삼각형 ABC에서 각 A, B, C의 대변 a, b, c에 대해 다음과 같은 관계를 만족함을 나타낸다.

마찬가지로,

도 성립한다. 여기서 R은 삼각형의 외접원의 반지름의 길이를 나타낸다.

코사인 법칙

코사인 법칙에는 총 두 가지의 법칙이 있다.

코사인 제 1 법칙에 따르면,

양변의 길이와 알고자 하는 변 사이의 두 각의 크기를 알 경우, 다른 한 변의 길이를 알아낼 때 사용할 수 있다.

코사인 제 2 법칙피타고라스의 정리를 확장한 것이다.

가 성립하고, 위의 식을 변형하면

와 같이 나타낼 수 있다.

코사인법칙은 두 변의 길이와 끼인각의 크기를 알 때 삼각형의 나머지 한 변의 길이를 구할 때 유용하게 쓸 수 있다. 또한 모든 변의 길이를 알고 있을 때 각의 코사인값을 구할 때에도 사용할 수 있다.

탄젠트 법칙

탄젠트법칙은 임의의 삼각형 ABC에서 각 A, B의 대변 a, b에 다음과 같은 식을 만족시킨다.

역사

기원전 2~1세기 그리스의 히파르코스프톨레마이오스 등은 각도에 대해 달라지는 의 길이를 다룬 적이 있다.

현재 쓰는 것과 같은 삼각 함수의 원형은 굽타 시대 인도 천문학에서 찾아볼 수 있다. 기원후 4~5세기 인도의 천문학 책이 산스크리트어에서 아랍어를 통해 라틴어로 번역되면서 유럽에 전해졌다. 5세기 초 발간된 인도의 천문학 서적 『수우르야 싯단타(Sūrya Siddhānt, 태양에 관한 지식)』에는 세계 최초로 삼각 함수에 관해 정확하고 자세하게 표현된 설명이 기록되어 있다.[3]

삼각 함수가 동아시아에 전해진 것은 16~17세기 때이다.

어원

영어 ‘사인(sine)’은 라틴어 sinus에서 왔는데, 이는 12세기의 유럽 번역가들이 아랍어 جَيْب(jayb)를 ‘옷의 목부분, 옷깃’으로 보고 라틴어로 번역한 것이다. 하지만 이 단어는 실제로는 ‘활시위’를 뜻하는 산스크리트어 ज्या(jyā, 베다 jiyā́)를 음차한 것이다.

‘탄젠트(tangent)’는 ‘접한다’는 뜻의 라틴어 tangens에서 왔고, ‘시컨트(secant)’는 ‘자른다’는 뜻의 라틴어 secans에서 왔다. 각각 원에 접하는 선과 자르는 선에 빗대어 붙인 이름이다.

코사인, 코탄젠트, 코시컨트의 ‘코(co-)’가 처음 쓰인 책으로는 에드먼드 건터(영어판)Canon triangulorum(1620년)이 있는데, ‘여각의 사인’(sinus complementi)을 ‘코사인(cosinus)’으로 줄여 부른 것이다.

한자 문화권에서는 독일의 선교사·과학자인 요한 슈렉(영어판)이 명나라에서 저술한 《대측(大測)》(1631) 등의 책에서 사인·코사인·탄젠트를 각각 정현(正弦)·여현(餘弦)·정절(正切)이라고 번역했다. 코탄젠트·시컨트·코시컨트는 각각 여절(餘切)·정할(正割)·여할(餘割)이라 한다. 이 이름은 근대화되기 전의 조선·일본에서 쓰였고, 지금도 중국에서 쓰인다.

같이 보기

각주

외부 링크

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Perdana Menteri Trudeau dapat merujuk pada: Pierre Trudeau (1919–2000), Perdana Menteri Kanada ke-15 (1968–1979, 1980–1984) dan ayah dari Justin Trudeau Justin Trudeau (lahir 1971), Perdana Menteri Kanada ke-23 (sejak 2015) dan putra Pierre Trud...

 

 

PistoiaKomuneCittà di PistoiaThe Bell Tower of the Cathedral in Piazza Duomo.Negara ItaliaWilayahTuscanyProvinsiPistoia (PT)Frazionilihat listPemerintahan • Wali kotaRenzo Berti (mulai Mei 2002)Luas • Total236 km2 (91 sq mi)Ketinggian65 m (213 ft)Populasi (30 September 2008) • Total90.072 • Kepadatan380/km2 (990/sq mi)DemonimPistoiesiZona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode po...

 

 

PicoPulauJulukan: Ilha PretaNegaraPortugalWilayah OtonomiAzoresPulauKelompok TengahLuas • Total447 km2 (173 sq mi) Pico adalah sebuah pulau di Portugal. Pulau ini terletak di bagian kepulauan Azores. Tepatnya di Samudra Pasifik. Dalam tradisi penyair Portugis, Raul Brandão, Pico disebut sebagai Ilha Preta (Pulau Hitam), untuk bumi vulkanik hitamnya, yang bertanggung jawab atas kebun-kebun anggur bersejarah yang ditunjuk-UNESCO yang memungkinkan pengembangan pu...

هذه صفحة مساعدة لكيفية عمل شيء ما.تفصّل هذه الصفحة طرق أو إجراءات بعض جوانب قواعد وممارسات ويكيبيديا. هذه الصفحة ليست واحدة من سياسات أو إرشادات ويكيبيديا، حيث لم تفحص بدقة عبر المجتمع. وصلات اللغات هي وصلات إنترويكي إلى نسخ اللغات الأخرى عن الموضوع نفسه ضمن نوع واحد من مشا...

 

 

CYTZCYYZCYKZCYZDCPZ9CNW8CTM4CNY8CPA5CPY5AHFBFDLFLALBAMATAWAclass=notpageimage| Location in the Toronto area. Historic airports code:AHF - Armour Heights FieldBF - Baker FieldDLF - De Lesseps FieldLA - Leaside AerodromeLBA - Long Branch AerodromeMA - Maple AerodromeTA - Toronto AerodromeWA - Willowdale Airfield Torontoclass=notpageimage| Location in Ontario Largest airports in the Greater Toronto AreaToronto Pearson International Airport served 47,130,358 passengers in 2017, making it the bus...

 

 

Questa voce sull'argomento centri abitati del Baden-Württemberg è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Sandhausencomune Sandhausen – Veduta LocalizzazioneStato Germania Land Baden-Württemberg DistrettoKarlsruhe CircondarioRhein-Neckar-Kreis TerritorioCoordinate49°20′38″N 8°39′29″E / 49.343889°N 8.658056°E49.343889; 8.658056 (Sandhausen)Coordinate: 49°20′38″N 8°39′29″E / 49....

Ni Ketut Mahadewi IstaraniInformasi pribadiKebangsaan IndonesiaLahir12 September 1994 (umur 29)Tabanan, Bali, IndonesiaTinggi162 m (531 ft 6 in)PeganganRightGanda putriPeringkat tertinggi13 (dengan Anggia Shitta Awanda 25 Januari 2018)Peringkat saat ini83 (dengan Tania Oktaviani Kusumah 3 Desember 2019) Rekam medali Bulu tangkis putri Mewakili  Indonesia Piala Sudirman 2019 Nanning Tim campuran Pesta Olahraga Asia 2018 Jakarta-Palembang Tim putri Kejuar...

 

 

American marathon in Massachusetts 1970 Boston MarathonVenueBoston, Massachusetts, U.S.DateApril 20, 1970ChampionsMenRon Hill (2:10:30)WomenSara Mae Berman (3:05:07)← 19691971 → The 1970 Boston Marathon took place on Monday, April 20, 1970. It was the 74th time the Boston Marathon was organized, and featured 1,174 official entrants.[1] This was the first edition of the race to have a qualifying standard, as the entry form stipulated A runner must submit the certi...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

第三十二届夏季奥林匹克运动会柔道比賽比賽場館日本武道館日期2021年7月24日至31日項目數15参赛选手393(含未上场5人)位選手,來自128(含未上场4队)個國家和地區← 20162024 → 2020年夏季奥林匹克运动会柔道比赛个人男子女子60公斤级48公斤级66公斤级52公斤级73公斤级57公斤级81公斤级63公斤级90公斤级70公斤级100公斤级78公斤级100公斤以上级78公斤以上级团体混...

 

 

Japanese professional wrestler For the football player, see Satoshi Yoneyama (footballer). Muhammad YoneYone in January 2020Birth nameSatoshi YoneyamaBorn (1976-02-23) February 23, 1976 (age 48)[1]Nagoya, Aichi, JapanProfessional wrestling careerRing name(s)Bichon Frise[2]Captain Noah[3]Muhammad YoneSatoshi Yoneyama[3]Billed height1.85 m (6 ft 1 in)[1]Billed weight110 kg (243 lb)[1]Trained byYoshiaki FujiwaraYuki Is...

 

 

Questa voce o sezione sull'argomento edizioni di competizioni calcistiche non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Campionato Interregionale 1990-1991 Competizione Campionato Interregionale Sport Calcio Edizione 43ª Organizzatore Lega Nazionale Dilettanti -Comitato per l'attività Interregionale L...

ASP WestwardIndustryNewspaperOwner1013 CommunicationsParentHearst Corporation Houston Community Newspapers (ASP Westward) Examiner Newspaper Group/The Rancher/Sugar Land Sun offices ASP Westward, L.P., or Westward,[1] was a local newspaper company, headquartered in Greenspoint, Houston.[2][3] It is owned by 1013 Communications of Reno, Nevada.[4] Houston Community Newspapers In Greater Houston ASP Westward did business as Houston Community Newspapers (HCN),[...

 

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Puerto Vallartacomune Puerto Vallarta – Veduta LocalizzazioneStato Messico Stato federato Jalisco TerritorioCoordinate20°36′49″N 105°13′38″W / 20.613611°N 105.227222°W20.613611; -105.227222 (Puerto Vallarta)Coordinate: 20°36′49″N 105°13′38″W / 20.613611°N 105.227222°W20.613611; -105.227222 (Puerto Vallarta) Altitudine10 m s.l.m. Superficie52 km² Abitanti221 200 (2014) Densità4 253,85 ab./km² Al...

 

 

  لمعانٍ أخرى، طالع أب (توضيح). أبمعلومات عامةصنف فرعي من والدانإنسان ذكر ممثلة بـ ذكر درجة القرابة 1 لديه جزء أو أجزاء legal father (en) الأب البيولوجيnon-biological father (en) النقيض أمولد تعديل - تعديل مصدري - تعديل ويكي بيانات الأبوة مسؤولية بطابع قدسي العلاقات(الخطوط العريضة) أنواع ا�...

 

 

Moisés Caicedo Moisés Caicedo con la camiseta del Brighton & Hove Albion F. C.Datos personalesNombre completo Moisés Isaac Caicedo CorozoNacimiento Santo Domingo, Ecuador2 de noviembre de 2001 (22 años)Nacionalidad(es) EcuatorianaAltura 1,78 m (5′ 10″)Peso 73 kg (161 lb)Carrera deportivaDeporte FútbolClub profesionalDebut deportivo 2019(Independiente del Valle)Club Chelsea F. C.Liga Premier LeaguePosición CentrocampistaDorsal(es) 25Goles en clubes 11Selecció...

Decumanus maximus di Palmira in Siria. Schema di base di un accampamento (castra) romano. Le porte erano quattro: la praetoria, verso il nemico (5); la decumana (7), ubicata sul lato opposto; la dextera (4) e la sinistra (6). Il decumanus maximus (2) collegava le porte praetoria e decumana, mentre il cardo maximus (3) la porta dextera a quella sinistra. In coincidenza del loro incrocio sorgeva solitamente il praetorium (1), che in seguito diveniva la sede del forum. Il decumano (in latino: de...

 

 

Pro-Spanish commerce raiders during the Dutch Revolt Witte de With's Action with Dunkirkers off Nieuwpoort in 1640 During the Dutch Revolt (1568–1648), the Dunkirkers or Dunkirk Privateers were commerce raiders in the service of the Spanish monarchy and later the Kingdom of France. They were also part of the Dunkirk fleet, which consequently was a part of the Spanish monarchy's Flemish fleet (Armada de Flandes). The Dunkirkers operated from the ports of the Flemish coast: Nieuwpoort, Ostend...