秋田県道253号角館長野線
|
Read other articles:
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Geneviève Grad Geneviève Gabrielle Grad (pengucapan bahasa Prancis: [ʒənvjɛv ɡabʁijɛl ɡʁa]; lahir 5 Juli 1944) adalah seorang aktris Prancis. Dia berperan sebagai Nicole Cruchot, putri petugas polisi Ludovic Cruchot (Louis de Funès) da...
Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...
العلاقات الأمريكية الباكستانية باكستان الولايات المتحدة تعديل مصدري - تعديل دونالد ترامب و عمران خان العلاقات الأمريكية الباكستانية هي العلاقات الثنائية التي تجمع بين الولايات المتحدة وباكستان.[1][2][3][4][5] أقامت الولايات المتحدة علاق...
Svend Foyn (1809–1894) Svend Foyn (9 Juli 1809 – 30 November 1894) adalah seorang tokoh Norwegia yang memelopori metode perburuan dan pemrosesan paus yang revolusioner. Ia memperkenalkan senapan harpun modern dan mengantarkan perburuan ikan paus ke masa modern.[1] Latar belakang Svend Foyn lahir di Foynegården, Tønsberg, dari pasangan Laurentius Foyn dan Benthe Marie Ager. Svend Foyn menikahi Elise Amalie Tvede pada tahun 1839 yang berujung pada perpisahan pada tahun 1842. Manta...
Yokohama F. MarinosNama lengkapYokohama F. MarinosJulukanMarinos, TricolorBerdiri1972StadionStadion Internasional, Yokohama, Jepang(Kapasitas: 72.327)PemilikNissan (80%)City Football Group (20%)KetuaRyoji KurosawaManajerKevin MuscatLigaJ1 League2023ke-2Situs webSitus web resmi klub Kostum kandang Kostum tandang Yokohama F.Marinos (横浜Fマリノスcode: ja is deprecated , Yokohama F Marinosu) merupakan sebuah klub sepak bola profesional Jepang yang bermain di J1 League, yaitu tingkat t...
Questa voce o sezione sull'argomento anatomia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Le informazioni riportate non sono consigli medici e potrebbero non essere accurate. I contenuti hanno solo fine illustrativo e non sostituiscono il parere medico: leggi le avvertenze. Muscolo semimembranosoIl mu...
This article is about the Accrington Stanley and Burnley manager. For the 1900s Stoke player, see Jack Haworth. For the 1910s Brighton and Middlesbrough player, see Jack Haworth (footballer, born 1887). English football manager John Haworth Personal informationDate of birth 8 May 1876[1]Place of birth Accrington, EnglandDate of death (1924-12-04)4 December 1924 (aged 48)Place of death Burnley, EnglandPosition(s) DefenderSenior career*Years Team Apps (Gls) Meadow Bank Managerial career...
British company Virgin Experience DaysIndustryExperience DaysFounded1988HeadquartersBourne End, BuckinghamshireParentInflexion Private EquityWebsitewww.virginexperiencedays.co.uk Virgin Experience Days is an experience day company launched in 1988 as Acorne Sports and is a brand licence holder for gift experiences and gift cards marketed under the Virgin name. Acorne took over Virgin Experience Days, which had been part of Richard Branson's Virgin Group, in 2002. History Beginning as 'Virgin ...
Human settlement in EnglandMildenhallSt Mary's ChurchMildenhallLocation within SuffolkArea36.03 km2 (13.91 sq mi) inc. West RowPopulation10,315 (2011) inc. West Row[1]• Density286/km2 (740/sq mi)OS grid referenceTL710748• London75 mi (121 km)Civil parishMildenhallDistrictWest SuffolkShire countySuffolkRegionEastCountryEnglandSovereign stateUnited KingdomPost townBURY ST. EDMUNDSPostcode districtIP28Diallin...
Pour les articles homonymes, voir Keller et Rosenberg. Lili Keller-Rosenberg LeignelBiographieNaissance 15 septembre 1932 (91 ans)CroixNom de naissance Lili RosenbergNationalité françaiseActivités Écrivain, conférencierAutres informationsDistinctions Officier de l'ordre national du Mérite (2017)Officier de la Légion d'honneur (2020)Commandeur des Arts et des Lettres (2023)Œuvres principales Je suis encore làEt nous sommes revenus seulsJ'avais votre âgemodifier - modifier...
أولاد احمد بن ابراهيم تقسيم إداري البلد المغرب الجهة مراكش آسفي الإقليم الرحامنة الدائرة الرحامنة الجماعة القروية أولاد حسون حمري المشيخة اللوتا بور 2 السكان التعداد السكاني 31 نسمة (إحصاء 2004) • عدد الأسر 2 معلومات أخرى التوقيت ت ع م±00:00 (توقيت قياسي)[1]، وت ع م+...
Group of marine parasites Myxozoa Triactinomyxon stage of Myxobolus cerebralis Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Cnidaria Subphylum: MyxozoaGrassé, 1970 Classes Myxosporea Malacosporea Myxozoa (etymology: Greek: μύξα myxa slime or mucus[1] + thematic vowel o + ζῷον zoon animal[2]) is a subphylum of aquatic cnidarian animals – all obligate parasites. It contains the smallest animals ever known to have lived. Over 2,180 specie...
Мечеть в Сураттхани Ислам в Таиланде — со второй половины XX века приобретает всё большее распространения. Это вторая по количеству верующих религия в государстве. Её исповедуют населяющие Таиланд малайцы, пакистанцы, тамилы и пенджабцы, а также беженцы-чамы из соседн...
Not to be confused with Romani people in Argentina. Ethnic group Romanian Argentines Total populationc. 10,000[citation needed]LanguagesRioplatense Spanish · RomanianReligionChristianityRelated ethnic groupsArgentines of European descent Part of a series of articles onRomanians Native communities Romania Moldova Ukraine (Chernivtsi Oblast) Serbia DiasporaEurope Italy Spain Germany France United Kingdom North America United States Canada South America Argentina Vene...
Disability symbols UN SDG logo The United Nations Framework Convention on Climate Change (UNFCCC), the Paris Agreement, the Sustainable Development Goals (SDGs), and the United Nations Convention on the Rights of Persons with Disabilities (CRPD) are connected through their common goals of addressing global challenges and promoting sustainable development through policies and international cooperation. This article focuses on climate change and the impact on persons with disabilities. Summary...
جونغ وو-جاي معلومات شخصية الميلاد 28 يونيو 1992 (العمر 32 سنة)كوريا الجنوبية الطول 1.79 م (5 قدم 10 1⁄2 بوصة) مركز اللعب مدافع الجنسية كوريا الجنوبية معلومات النادي النادي الحالي جيجو يونايتد الرقم 22 مسيرة الشباب سنوات فريق 2011–2013 Yewon Arts University [الإنجليزية] ا...
English astronomer (1764–1786) For other people named John Goodricke, see John Goodricke (disambiguation). John GoodrickeBorn(1764-09-17)17 September 1764GroningenDied20 April 1786(1786-04-20) (aged 21)NationalityBritishKnown forStudies of variable starsAwardsCopley Medal (1783)Scientific careerFieldsAstronomy John Goodricke FRS (17 September 1764 – 20 April 1786) was an English amateur astronomer. He is best known for his observations of the variable star Algol (Beta Persei) in...
1911 1921 Élection fédérale canadienne de 1917 235 sièges de la Chambre des communes (Majorité absolue : 118 sièges) 17 décembre 1917 Type d’élection Élection législative fédérale Parti unioniste – Robert Laird Borden Voix 1 070 694 56,93 % 8,4 Sièges obtenus 153 21 Parti libéral – Wilfrid Laurier Voix 729 756 38,80 % 7 Sièges obtenus 82 3 Résultats par province Sièges à la ...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Little Walter and Otis Rush Live in Chicago – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this message) Unofficial live album by Little Walter and Otis Rush Live in ChicagoLive album (unofficial) by Little Walter...
Conserved physical quantity; rotational analogue of linear momentum Angular momentumThis gyroscope remains upright while spinning owing to the conservation of its angular momentum.Common symbolsLIn SI base unitskg⋅m2⋅s−1Conserved?yesDerivations fromother quantitiesL = Iω = r × pDimension M L 2 T − 1 {\displaystyle {\mathsf {M}}{\mathsf {L}}^{2}{\mathsf {T}}^{-1}} Part of a series onClassical mechanics F = d p d t {\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}} Se...