^K. Iga, T. Kambayashi, C. Kitahara (27 March 1978). Surface-emitting GaInAsP / InP laser (I). 25th Joint Conference on Applied Physics. Musashi Institute of Technology. p. 63. 27-p-11。
^ abChristensen, D. H.; Barnes, F. S. (1987-2). “Vertical Cavity Surface Emitting Laser in Molecular Beam Epitaxial GaAs/AlGaAs using a Multilayer Dielectric Mirror”. Topical Meeting on Semiconductor Lasers, Technical Digest, Optical Society of America. 6. ISBN0-936659-39-4
^ abcH. Soda, K. Iga, C. Kitahara, and Y. Suematsu (1979). “GaInAsP/InP surface emitting injection lasers”. Jpn. J. Appl. Phys.18 (12): 2329-2330. doi:10.1143/JJAP.18.2329.
^ abK. Iga (2000). “Surface emitting laser-its birth and generation of new optoelectronic fields”. IEEE J. Select. Top. Quantum Electron.6 (6): 1201-1215. doi:10.1109/2944.902168.
^Y. Motegi, H. Soda, and K. Iga (1982). “Surface emitting GaInAsP/InP injection laser with short cavity length”. Electron. Lett.18 (11): 461-463. doi:10.1049/el:19820314.
^ abK. Iga, S. Kinoshita, and F. Koyama (1987). “Microcavity GaAlAs/GaAs surface-emitting laser with Ith=6 mA”. Electron. Lett.23 (3): 134-136. doi:10.1049/el:19870095.
^ abT. Sakaguchi, F. Koyama, and K. Iga (1988). “Vertical Cavity Surface-Emitting Laser with an AlGaAs/AlAs Bragg Reflector”. Electron. Lett.24 (15): 928-929. doi:10.1049/el:19880632.
^ abH. Uenohara, F. Koyama, and K. Iga (1989). “Application of the multi-quantum well (MQW) to a surface emitting laser”. Jpn. J. Appl. Phys.28 (4): 740-741. doi:10.1143/JJAP.28.740.
^ abJ. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English (1989). “Transverse modes, waveguide dispersion and 30 ps recovery in submicron GaAs/AlAs micro-resonators”. Appl. Phys. Lett.55 (1): 22-24. doi:10.1063/1.101746.
^S. W. Corzine, R. S. Geels, R. H. Yan, J. W. Scott, and L. A. Coldren (1989). “Efficient, narrow-linewidth distributed-Bragg reflector surface emitting laser with periodic gain”. Photo. Tech. Lett.1 (3): 52-54. doi:10.1109/68.87894.
^ abR. S. Geels, and L. A. Coldren (1991). “Sub-milliamp threshold vertical-cavity laser diodes”. Appl. Phys. Lett.57: 1605-1607. doi:10.1063/1.103361.
^R. A. Morgan (1995). “High-performance, producible vertical-cavity lasers for optical interconnect”. In T. P. Lee Ed.. Current trends in vertical cavity surface emitting lasers. World Scientific. pp. 65-95. doi:10.1142/2774. ISBN978-981-02-2288-8
^T. Wipiejewski, K. Panzlaf, E. Zeeb, and K. J. Ebeling (1992). Sub-milliamp vertical cavity laser diode structure with 2.2 nm continuous tuning. 18th European Conf. Opt. Comm. '1992.
^Y. Hayashi, T. Mukaihara, N. Hatori, Ohnoki, A. Matsutani, F. Koyama, and K. Iga (1995). “Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure”. Electron. Lett.31 (7): 560-561. doi:10.1049/el:19950391.
^J. M. Dallesasse, N. Holonyak Jr., A. R. Sugg, T. A. Richard, and N. El-Zein (1990). “Hydrolyzation-oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices”. Appl. Phys. Lett.57 (26): 2844-2846. doi:10.1063/1.103759.
^M. H. Crawford, K. D. Choquette, R. J. Hickman, and K. M. Geib (1997). “Performances of selective oxidized AlGaInP-based visible VCSELs”. In Ed. C. Chang-Hasnain. OSA Trends in optics and Photonics (Advances in Vertical Cavity Surface Emitting Laser. TOPS15. pp. 112-117. ISBN1557525005
^ abN. Yokouchi, T. Miyamoto, T, Uchida, Y, Inaba, F. Koyama, and K. Iga (1992). “40 Å continuous tuning of a GaInAsP/InP vertical-cavity surface-emitting laser using an external mirror”. IEEE Photon. Technol. Lett.4 (7): 701-703. doi:10.1109/68.145243.
^ abM. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain (1995). “Tunable micromachined vertical cavity surface emitting laser”. Electron. Lett.31 (19): 1671-1672. doi:10.1049/el:19951159.
^E. Ho, F. Koyama, and K. Iga (1990). “Effective reflectivity from self-imaging in a Talbot cavity and its effect on the threshold of a finite 2-D surface emitting laser array”. Appl. Opt.29 (34): 5080-5085. doi:10.1364/AO.29.005080. PMID20577514.
^T. Baba, Y. Yogo, K. Suzuki, F. Koyama, and K. Iga (1993). “Near room temperature continuous wave lasing characteristics of GalnAsP/lnP surface emitting laser”. Electron. Lett.29 (10): 913-914. doi:10.1049/el:19930609.
^K. Iga (2018). “Forty years of VCSEL: Invention and innovation”. Jpn J. Appl. Phys.57 (8S2): 1-7. doi:10.7567/JJAP.57.08PA01.
^E. Towe, R. F. Leheny, and A. Yang (2000). “A historical perspective of the development of the vertical-cavity surface-emitting laser”. IEEE Journal on Selected Topics in Quantum Electronics6 (6): 1458–1464. doi:10.1109/2944.902201.
^C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee (1991). “Multiple wavelength tunable surface-emitting laser arrays”. IEEE J, Quantum Electron.27 (6): 1368-1376. doi:10.1109/3.89953.
^Wang B., W. V. Sorin, P. Rosenberg, L. Kiyama, S. Mathai, and M. R. T. Tan (2020). “4x112 Gbps/Fiber CWDM VCSEL arrays for co-packaged interconnects”. J. Lightwave Tech.38 (13): 3439-3444. doi:10.1109/JLT.2020.2980986.
^Hassan M. A., M. Nakahama, and F. Koyama (2020). “High-power, quasi-single-mode vertical-cavity surface-emitting laser with near-diffraction-limited and low-divergence beam”. Japanese Journal of Applied Physics59 (9): 090904-1-4. doi:10.35848/1347-4065/ababb6.
関連文献
[1978CAS] H. C. Casey and M. B. Panish: Heterostructure Lasers, Academic Press, New York (1978)
[1980UTA] K. Utaka, Y. Suematsu, K. Kobayashi and H. Kawanishi, "GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors at 1.3 wavelength", Jpn. J. Appl. Phys., Vol.19, No.2, pp.L137-L140, Feb. 1980.
[1982ARA] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current”, Appl. Phys. Lett., Vol. 40, pp.939-941, 1982.
[1985ARA] Y. Arakawa and A. Yariv, “Theory of gain, modulation response and spectral linewidth in AlGaAs quantum well lasers”, IEEE J. Quantum Electron., Vol. QE-21, No. 10, pp. 1666-1674, Oct. 1985.
[1985ASA] M. Asada and Y. Suematsu, IEEE J. QE, vol. QE-21, p. 434(1985)
[1986ASA] M. Asada, Y. Miyamoto and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers”, IEEE J. Quantum Electron., Vol. QE-22, pp.1915-1921, 1986.
[1988IGA] K. Iga, F. Koyama, and S. Kinoshita: “Surface emitting semiconductor laser,” IEEE J. Quant. Electron., vol. QE-24, no.9, pp. 1845-1855, Sept. (1988).
[1989KOY] F. Koyama, S. Kinoshita, and K. Iga: “Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. vol. 55, no. 3, pp.221-222 (1989).
[1991YAR] A. Yariv:"Optical Electronics", 1991.
[1994COL] L. A. Coldren, S. Corzine, and M. L. Masanovic: "Diode Lasers and Integrated Optics", Wiley, 1994?.
[1994IGA] K. Iga: "Fundamentals of Laser Optics", Plenum, p. 173, (1994).
[1995CHU] S. L. Chuang: "Physics of Optoelectronic Devices", John Wiley & Sons, New York, 1995.
[1997JUN] C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Muller, and K. J. Ebeling: “4.8 mW single mode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett., vol. 33, no. 21, pp. 1790-1791 (1997).
[2003TAT] J. A. Tatum and J. K. Guenter:"The VCSELS are coming", Proc. SPIE 4994, Vertical-Cavity Surface-Emitting Lasers VII, 17 June 2003;
[2014KOY] Koyama F.: "Advances and new functions of VCSEL photonics", Special Section: The Commemoration of the 20th Anniversary of the Optical Review, Optical Review, Vol. 21, pp. 893–904, Nov. 2014.
[2014SUE] Y. Suematsu, “Dynamic Single Mode Lasers,” J. Lightwave Tech., vol.32, no.6, pp. 1144-1158, March 2014.
[2018PAD] B. D. Padullaparthi et. al. ‘High Volume Manufacturing of VCSELs for Datacom & Sensing’, Industry Panel Discussions, Th4, pp: 51, International Nano-Optoelectronics Workshop (i-NOW) 2018, UC Berkeley, USA.
[2020IGAa] K. Iga, "VCSEL Odyssey", SPIE Book, No. PM318, September 1, 2020.
[2020IGAb] K. Iga and G. Hatakoshi. "Treasure Microbox of Optoelectronics", Adcom-Media Co. Ltd. Tokyo, April 25, 2020. (PDF Japanese language version)
[2020IGAd] Kenichi Iga, "VCSEL: born small and grown big," Proc. SPIE 11263, Vertical External Cavity Surface Emitting Lasers (VECSELs) X, 1126302 (2 March 2020); doi: 10.1117/12.2554953
[2020KOY] Koyama F.: "High power VCSEL amplifier for 3D sensing", CLEO-2020, STu4M.3, 2020.
[2021PAD] B. D. Padullaparthi, “Impact of neff of 850nm VCSEL cavity on low noise for 100G eSR4 transmission and its potential for 400G Datacenter Optical Interconnects” Proc. SPIE 11704 11704-24 (2021) DOI: 10.1117/12.475724