前川辰男
|
Read other articles:
American politician and lawyer (1867–1919) For the Northern Irish footballer and loyalist activist, see William Borland (loyalist). William Patterson BorlandMember of the U.S. House of RepresentativesIn officeMarch 4, 1909 – February 20, 1919 Personal detailsBorn(1867-10-14)October 14, 1867Leavenworth, Kansas, U.S.DiedFebruary 20, 1919(1919-02-20) (aged 51)Koblenz, GermanyResting placeElmwood CemeteryKansas City, Missouri, U.S.Political partyDemocraticSpouse Ona Winants ...
Bologna, 12 novembre 1989. Durante le celebrazioni per il 45º anniversario della battaglia di Porta Lame il segretario del Partito Comunista Italiano, Achille Occhetto, annuncia a sorpresa la svolta della Bolognina, primo passo del processo che porterà allo scioglimento del PCI e alla nascita del Partito Democratico della Sinistra. La svolta della Bolognina è stato l'epilogo di un processo politico che, partendo dalla fine degli anni 70, portò il 3 febbraio 1991 allo scioglimento del Part...
Armenian football club For other football clubs named Ararat, see FC Ararat. Football clubArarat-Armenia Արարատ-ԱրմենիաFull nameFootball Club Ararat-ArmeniaFounded2017; 7 years ago (2017)GroundYerevan Football Academy StadiumCapacity1,428OwnerSamvel KarapetyanDirector GeneralPoghos GalstyanManagerVardan MinasyanLeagueArmenian Premier League2022–23Armenian Premier League, 3rd Home colours Away colours Current season FC Ararat-Armenia (Armenian: Ֆուտբոլա...
بلدة باري الإحداثيات 44°11′09″N 72°28′54″W / 44.1857891°N 72.481805°W / 44.1857891; -72.481805[1] [2] تقسيم إداري البلد الولايات المتحدة[3] التقسيم الأعلى مقاطعة واشنطن[1] التقسيمات الإدارية ساوث باري خصائص جغرافية المساحة 79.5 كيلومتر مربع ا�...
追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...
Hollywood Walk of FameLa Hollywood Walk of Fame vista dalla stazione metropolitana Hollywood/Highland in una foto del 2019 UbicazioneStato Stati Uniti LocalitàHollywood Coordinate34°06′05.04″N 118°20′41.88″W / 34.1014°N 118.344967°W34.1014; -118.344967Coordinate: 34°06′05.04″N 118°20′41.88″W / 34.1014°N 118.344967°W34.1014; -118.344967 CaratteristicheIstituzione1958 Apertura1960 Visitatori10 000 000 Sito web Modifica dati...
American baseball player Baseball player Johnny MonellMonell with the New York MetsCatcher / First basemanBorn: (1986-03-04) March 4, 1986 (age 38)Bronx, New YorkBatted: LeftThrew: RightProfessional debutMLB: September 5, 2013, for the San Francisco GiantsKBO: March 31, 2017, for the KT WizLast MLB appearanceOctober 4, 2015, for the New York MetsMLB statisticsBatting average.161Home runs0Runs batted in5KBO statistics (through 2017 season)Batti...
此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...
جزء من سلسلة حولالماركسية مؤلفات نظرية المخطوطات الاقتصادية والفلسفية (1844) أطروحات حول فويرباخ الأيديولوجية الألمانية بيان الحزب الشيوعي برومير الثامن عشر للويس بونابرت غرندريسه مساهمة في نقد الاقتصاد السياسي رأس المال جدليات الطبيعة مفاهيم اشتراكية علمية حتمية اقتصاد...
Team formed in 2009 to investigate human rights violations by Israel against Palestinians in Gaza Not to be confused with United Nations Fact Finding Mission on the 2014 Israel–Gaza conflict. Richard Goldstone The United Nations Fact Finding Mission on the Gaza Conflict, also known as the Goldstone Report, was a United Nations fact-finding mission established in April 2009 pursuant to Resolution A/HRC/RES/S-9/1 of the United Nations Human Rights Council (UNHRC) of 12 January 2009, following...
Behavior linked to spiritual pursuits For other uses, see Divine madness (disambiguation). Divine madness, also known as theia mania and crazy wisdom, refers to unconventional, outrageous, unexpected, or unpredictable behavior linked to religious or spiritual pursuits. Examples of divine madness can be found in Buddhism, Christianity, Hellenism, Hinduism, Islam, Judaism and Shamanism. It is usually explained as a manifestation of enlightened behavior by persons who have transcended societal n...
Museo Nazionale dell'IranIngresso del museo UbicazioneStato Iran LocalitàTeheran IndirizzoNo.1, Henri Rolin St., Siy-e Tir St., Emam Khomeini Ave, Tehran e تهران، خیابان امام خمینی، ابتدای خیابان سی تیر، خیابان پروفسور رولن، شماره یک Coordinate35°41′13.36″N 51°24′52.6″E35°41′13.36″N, 51°24′52.6″E CaratteristicheTipoarcheologico, arte Istituzione1937 Apertura1928 ProprietàCultural Heritage Organization ...
Association football club in Northern Ireland This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dundonald F.C. – news · newspapers · books · scholar · JSTOR ...
For broader coverage of this topic, see Communication. Not to be confused with Canadian Journal of Speech-Language Pathology and Audiology, formerly known as Human Communication.Human communication, or anthroposemiotics, is a field of study dedicated to understanding how humans communicate. Humans' ability to communicate with one another would not be possible without an understanding of what we are referencing or thinking about. Because humans are unable to fully understand one another's per...
English cricketer For the founder of the Royal National Institute for the Blind, see Thomas Armitage. Not to be confused with Thomas Armitage (cricketer). Tom ArmitageArmitage in 1876Personal informationFull nameThomas ArmitageBorn(1848-04-25)25 April 1848Walkley, Yorkshire, EnglandDied21 September 1922(1922-09-21) (aged 74)Chicago, Illinois, USBattingRight-handedBowlingRight arm mediumInternational information National sideEnglandTest debut (cap 1)15 March 1877 v ...
Formula for the derivative of a product This article is about the derivative of a product. For the relation between derivatives of 3 dependent variables, see Triple product rule. For a counting principle in combinatorics, see Rule of product. For conditional probabilities, see Chain rule (probability). Geometric illustration of a proof of the product rule Part of a series of articles aboutCalculus ∫ a b f ′ ( t ) d t = f ( b ) − f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,...
Oberste Heeresleitung Direzione suprema degli esercitiInsegna del comando di una armata dell'esercito tedesco Descrizione generaleAttiva1914 - 1919 Nazione Germania TipoStruttura di comando RuoloDirezione delle forze armate tedesche e della condotta bellica della Germania Battaglie/guerreprima guerra mondiale ComandantiDegni di notaHelmuth von Moltke Erich von Falkenhayn Paul von Hindenburg Erich Ludendorff Voci su unità militari presenti su Wikipedia Oberste Heeresleitung (OHL, Direzio...
Claude Lorrain Claude Gellée (o Gelée) detto Lorrain, o anche Claudio Lorenese (Chamagne, 16 dicembre 1600 – Roma, 23 novembre 1682), è stato un pittore francese, attivo soprattutto a Roma: con Nicolas Poussin, è considerato il maestro del genere del paesaggio ideale. Indice 1 Biografia 2 Opere principali 3 Note 4 Voci correlate 5 Altri progetti 6 Collegamenti esterni Biografia Il monumento funebre a Lorrain nella chiesa di San Luigi dei Francesi a Roma Giunse a Roma giovanissimo (nel 1...
Pour le CLES, voir Certificat de compétences en langues de l'enseignement supérieur. Cles Administration Pays Italie Région Trentin-Haut-Adige Province Trentin Code postal 38023 Code ISTAT 022062 Code cadastral C794 Préfixe tel. 0463 Démographie Gentilé clesiani Population 7 201 hab. (1er janvier 2023[1]) Densité 185 hab./km2 Géographie Coordonnées 46° 22′ 00″ nord, 11° 02′ 00″ est Altitude Min. 658 mMax. 658...
The four medians of a tetrahedron are concurrent Medians of a tetrahedron intersecting in a point S {\displaystyle S} (its centroid), such that | A S | | S S B C D | = | B S | | S S A C D | = | C S | | S S A B D | = | D S | | S S A B C | = 3 1 {\displaystyle {\frac {|AS|}{|SS_{BCD}|}}={\frac {|BS|}{|SS_{ACD}|}}={\frac {|CS|}{|SS_{ABD}|}}={\frac {|DS|}{|SS_{ABC}|}}={\frac {3}{1}}} Commandino's theorem, named after Federico Commandino (1509–1575), states that the four medians of a tetrahedron...