ダヴィッド・ディ・ドナテッロ新人監督賞
|
Read other articles:
IctaluridaeRentang fosil: Eosen - sekarang PreЄ Є O S D C P T J K Pg N Ictalurus punctatus Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Siluriformes Superfamili: Ictaluroidea Famili: IctaluridaeT. N. Gill, 1861 Genus Ameiurus Astephus (punah) Ictalurus Noturus Prietella Pylodictis Satan Trogloglanis Ictaluridae adalah keluarga ikan berkumis asli Amerika Utara, di mana mereka merupakan sumber makanan penting dan terkadang dipancing untu...
Alireza Zakani Presiden Pusat Riset MajlisPetahanaMulai menjabat 22 Juli 2020 PendahuluKazem JalaliPenggantiPetahanaAnggota Parlemen IranPetahanaMulai menjabat 27 Mei 2020Menjabat bersama Ahmad Amirabadi dan Mojtaba ZonnourDaerah pemilihanQomMayoritas190.422 (59.00%)Masa jabatan28 Mei 2004 – 28 Mei 2016Daerah pemilihanTehran, Rey, Shemiranat dan EslamshahrMayoritas327.818 (29.10%) Informasi pribadiLahir1965 (umur 58–59)[1]Tehran, Iran[1]Ke...
خريطة البعثات الدبلوماسية في اليونان. تعرض هذه الصفحة قائمة البعثات الدبلوماسية في اليونان. حاليا، توجد في العاصمة أثينا 85 سفارة.[1] دول أخرى عديدة لها سفراء معتمدون في اليونان، لكن معظمهم يقيم في روما، أو باريس. هذه القائمة تستثني القنصليات الفخرية. سفارات سفارة الأرج�...
Lambang untuk pencurian identitas Pencurian identitas dapat dilakukan dan mudah untuk mencuri informasi seseorang, bahkan hanya dengan sidik jari. Ada usul agar Pencuri identitas digabungkan ke artikel ini. (Diskusikan) Pencurian identitas (identity theft, disebut juga Shoulder surfers dan Dumpster divers; ungkapan baru Bahasa Inggris) sejenis artinya dengan peniru identitas di mana seseorang merasa tidak mampu menjadi dirinya sendiri hingga dia ingin menjadi orang lain yang dia idolakan atau...
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (September 2019) (Learn how and when to remove this template message) The 1995 edition of Orthodox Missal, an Antiochian Western Rite Vicariate missal that contains the formula and rubrics for celebrating the Liturgy of St. Tikhon The Liturgy of St. Tikhon is one of the Divine L...
Default of three major Icelandic banks This article needs to be updated. Please help update this article to reflect recent events or newly available information. (September 2019) Prime Minister of Iceland Geir H. Haarde speaks with reporters on 27 October 2008. Part of a series on the History of Iceland Timeline of Icelandic history Middle ages Settlement of Iceland 870–930 Icelandic Commonwealth 930–1262 Farthings 965 Christianization 999–1118 St...
威廉·莱昂·麦肯齐·金阁下The Rt Hon. William Lyon Mackenzie KingOM CMG PC 加拿大总理任期1921年12月29日—1926年6月28日君主乔治五世前任阿瑟·米恩继任阿瑟·米恩任期1926年9月25日—1930年8月7日君主乔治五世前任阿瑟·米恩继任理查德·贝德福德·贝内特任期1935年10月23日—1948年11月15日君主乔治五世爱德华八世乔治六世前任理查德·贝德福德·贝内特继任路易·圣洛朗 个人资料出生...
2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 % 获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...
Bahasa Wallonia walon Dituturkan diBelgia, PrancisWilayahWallonia, Ardennes, bahasa minoritas di County Door, Wisconsin (Amerika Serikat)EtnisOrang WalloniaPenuturSekitar 600.000 memiliki pemahaman mengenai bahasa ini[1] (2007)[2]Kemungkinan hanya sekitar 300.000 penutur aktif di kawasan pedesaan Wallonia Rumpun bahasaIndo-Eropa Italik Latino-Faliskan Romanik Italo Barat Romanik Barat Gallo-Romanik Rhaeto-Romanik[3] (possibly)OïlWallonia Bentuk awalLatin Kun...
Short story by Rudyard KiplingWirelessShort story by Rudyard KiplingCountryUnited KingdomLanguageEnglishGenre(s)Short storyPublication Wireless is a short story by Rudyard Kipling. It was first published in Scribner's Magazine in 1902, and was later collected in Traffics and Discoveries.[1] The sister-poem accompanying it, Butterflies or Kaspar's Song in Varda, Kipling claimed to have been a translation of an old Swedish poem (from the Swedish of Stagnelius),[1] although ...
Five prominent Canadian women's rights advocates This article is about the women's rights advocates. For other uses, see The Famous Five. The Famous Five (French: Célèbres cinq), also known as The Valiant Five,[1] and initially as The Alberta Five, were five prominent Canadian suffragists who advocated for women and children: Henrietta Muir Edwards, Nellie McClung, Louise McKinney, Emily Murphy, and Irene Parlby.[2] On August 27, 1927, they petitioned the federal government ...
American ventriloquist, comedian and actor (1903–1978) Edgar BergenBergen with his ventriloquist dummies Charlie McCarthy and Mortimer Snerd in 1949BornEdgar John Berggren(1903-02-16)February 16, 1903Chicago, Illinois, U.S.DiedSeptember 30, 1978(1978-09-30) (aged 75)Paradise, Nevada, U.S.Resting placeInglewood Park CemeteryOccupationsVentriloquistcomedianactorvaudevillianradio performerYears active1919–1978Spouse Frances Westerman (m. 1945)Children...
Ne doit pas être confondu avec Précarité. Manifestation contre la pauvreté des étudiants, France. Habitants des rues du district de San'ya à Tokyo, au Japon. La pauvreté est, dans une société donnée, le fait d'être dans une situation d'infériorité matérielle par rapport aux individus les plus favorisés[1] ; cela se traduit notamment par des difficultés à subvenir à ses besoins et à ceux de ses proches, mais aussi par une stigmatisation de la part des personnes plus ri...
This article is about men's Danish football league champions. For women's title list, see List of Danish women's football champions. The Danish football champions are the winners of the highest league of football in Denmark. The title has been contested since 1913,[1] in a varying form of competitions. Since 1991, the winners have been found through the Danish Superliga championship. The Danish football championship is governed by the Divisionsforeningen. The early Danish football ch...
Serafima BirmanLahirSerafima Germanovna Birman10 August 1890Kishinyov, Bessarabia Governorate, Kekaisaran RusiaMeninggal11 Mei 1976(1976-05-11) (umur 85)Leningrad, Soviet UnionPekerjaanAktris, sutradaraTahun aktif1911–1972Suami/istriAlexander Talanov Serafima Germanovna Birman (bahasa Rusia: Серафима Германовна Бирман; 10 Agustus [K.J.: 29 Juli] 1890, 10 Agustus 1890 – 11 Mei 1976) adalah seorang sutradara, aktris, dan penulis asal Rusi...
ماريوس بونتمرسي (بالفرنسية: Marius) معلومات شخصية مواطنة فرنسا الزوجة كوزيت الحياة العملية تأليف فيكتور هوغو الجنس ذكر المهنة ثوري تعديل مصدري - تعديل ماريوس پونتمرسي (بالفرنسية: Marius Pontmercy) تنطق بالفرنسية: [maʁjys pɔ̃mɛʁsi] شخصية في رواية البؤساء، �...
上総鶴舞駅 駅舎(2008年5月) かずさつるまい KAZUSA TSURUMAI ◄上総川間 (1.5 km) (2.0 km) 上総久保► 所在地 千葉県市原市池和田898-2北緯35度22分52.9秒 東経140度9分54.5秒 / 北緯35.381361度 東経140.165139度 / 35.381361; 140.165139座標: 北緯35度22分52.9秒 東経140度9分54.5秒 / 北緯35.381361度 東経140.165139度 / 35.381361; 140.165139所属事業者 小湊鉄道�...
German zoologist (1835–1899) This article is about the zoologist. For the chemist, see Karl Ernst Claus. Carl Friedrich Wilhelm ClausBorn(1835-01-02)2 January 1835Kassel, GermanyDied18 January 1899(1899-01-18) (aged 64)Vienna, Austria-HungaryAlma materUniversity of MarburgUniversity of GießenScientific careerFieldsMarine zoologyInstitutionsUniversity of WürzburgUniversity of GöttingenUniversity of ViennaDoctoral advisorRudolf Leuckart Carl Friedrich Wilhelm Claus (2 January 18...
Applying Algebraic structures to topological spaces For other uses, see Homology (disambiguation). In mathematics, the term homology[a], originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups. This operation, in turn, allows one to associate various named homologies or homology theories to various other types of...
For other uses, see Universal (disambiguation). Characterizing property of mathematical constructions The typical diagram of the definition of a universal morphism. In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers...