Il pirazolo (1,2-diazolo o 1H-pirazolo) è un composto eterociclicoaromatico formato da un singolo anello aromatico di cinque atomi, di cui tre di carbonio e due di azoto in posizione adiacente, tutti ibridati sp2.[2] Il pirazolo si presenta all'aspetto come cristalli incolori, ma spesso con leggerissima sfumatura gialla in campioni commerciali, che fondono a 68-70 °C, facilmente solubili in acqua (s ≈ 1000 g/L, ≈ 14,7 M)[3], alcool e acetone, molto meno in etere etilico, benzene o toluene. Nel solido, come anche nel liquido, le molecole sono unite in catene lineari tramite legami idrogeno, a causa dei quali sono anche presenti dimeri e trimeri ciclici (e oligomeri), visto che la molecola è sia donatrice di legami idrogeno (NH), che accettrice (N).[4][5] L'estesa presenza di legami idrogeno tra le sue molecole rende conto del fatto che esso sia solido a T ambiente, mentre il pirrolo, il furano e il tiofene (eterocicli aromatici pentaatomici con un solo eteroatomo) siano liquidi alquanto volatili (o molto nel caso del furano), aventi punti di ebollizione decisamente inferiori. La molecola è planare[6] e ha un notevole momento dipolare, 2,20 D (H2O, 1,86 D), maggiore di quello del pirrolo (1,71 D).[7][8]
La sostituzione dell'azoto pirrolico con un atomo di ossigeno dà l'isossazolo, quella con un atomo di zolfo l'isotiazolo, altri due eterocicli aromatici degni di nota; la condensazione di un anello benzenico sul lato C(4)-C(5) dà l'indazolo.
Storia
Il termine «pirazolo» per questa sostanza ed esteso ai suoi derivati fu coniato dal chimico tedesco Ludwig Knorr nel 1883.[9] Nel 1898 il chimico tedesco Hans von Pechmann sviluppò il metodo di sintesi del pirazolo a partire da acetilene e diazometano.[10]
Di questo metodo sono state poi sviluppate successive varianti con alcheni, al posto di alchini, attivati da gruppi carbonilici -C(=O)X recanti vari sostituenti, e da gruppi affini, come -C≡N.[12]
I pirazoli possono essere prodotti per condensazione di aldeidi α,β-insature (es. acroleina e derivati) con idrazina (o anche idrazine monosostituite) con eliminazione di acqua e successiva deidrogenazione della pirazolina intermedia:[13]
Anche la condensazione di 1,3-dichetoni, come l'acetiacetone nell'esempio sotto, con idrazina in ambiente basico costituisce un metodo efficace per la sintesi di pirazoli 3,5-dialchilsostituiti:[14]
dato però che le 1,3-dialdeidi sono in genere troppo reattive, a volte si preferisce utilizzare i loro bis(acetali), che funzionano ugualmente perché i gruppi aldeidici si rigenerano nell'ambiente di reazione.
Struttura e proprietà
Il pirazolo è un composto endotermico, ΔHƒ° = +105,4 kJ/mol in fase solida. In questa molecola è utile distinguere le funzioni dei due atomi di azoto: uno porta un idrogeno (NH) e viene detto azoto pirrolico (in analogia con l'analogo NH nel pirrolo):[2] come in quest'ultimo il suo doppietto di elettroni rende l'anello aromatico con 6 elettroni π (regola di Hückel) e arricchisce la densità elettronica sul resto dell'anello; come nel pirrolo, la presenza del doppietto delocalizzato sull'anello funge da attivante verso l'attacco elettrofilo e ciò favorisce quindi le sostituzioni elettrofile sull'anello aromatico. L'altro (N), con un doppietto libero non impegnato nell'aromaticità e quindi basico, viene detto azoto piridinico (in analogia con la piridina): come in quest'ultima, esso funge da disattivante verso gli elettrofili e tende ad impoverire di densità elettronica l'anello.[15]
Nell'anello pirazolico tutti gli atomi dell'anello sono ibridati sp2 e ci si attende quindi una struttura planare. In fase gassosa si trova che in effetti la molecola è planare, con simmetria Cs;[16] La sua struttura dettagliata è stata indagata con la spettroscopia rotazionale nella regione delle microonde; dall'analisi dei dati sono stati desunti i parametri strutturali, alcuni dei quali, come lunghezze (r) ed angoli (∠) di legame, sono riportati qui di seguito:[17]
Si nota che l'anello pentagonale non è regolare. Il legame N-N, che normalmente è disegnato come singolo nelle comuni rappresentazioni, ha sicuramente un certo carattere di legame doppio; in effetti, la sua lunghezza, come si vede, è intermedia tra quella del doppio legame -N=N- del trans-diazene (125,2 pm[16]) e quella del singolo (>N–N<) dell'idrazina (144,6 pm[16]). Questo carattere di lunghezza intermedia tra quelle di legame singolo e doppio è presente anche per le altre coppie di atomi dell'anello e tale sostanziale non alternanza delle lunghezze di legame è in accordo con l'aromaticità dell'anello stesso. Per confronto, il legame C-C nel benzene è lungo 139,7 pm[16] e i legami C-N nella piridina, nella quale c'è comunque una lieve alternanza, è di 134,0 pm.[16]
I legami di atomi del secondo periodo (come C e N) con l'idrogeno sono naturalmente molto più corti e la loro lunghezza varia molto meno con il tipo di ibridazione di tali atomi. Tuttavia, entro l'ambito della significatività, si può dire che il legame N-H, con N ibrido sp2, è lievissimamente più corto di quello nell'ammoniaca (101,2 pm[16]), in cui N è ibridato sp3, come atteso per il maggior carattere s nell'orbitale ibrido che qui N usa per legarsi ad H. Analogamente, per i legami C-H; per confronto, nel benzene tale lunghezza ammonta a 108,4 pm.[16]
Gli angoli di legame interni all'anello pirazolico, ricordando che nel pentagono regolare l'angolo è di 108°, possono essere divisi in due gruppi: quelli un po' inferiori (quelli su N2, C4 eC5) e quelli un po' superiori (quelli su C3 e N1).
Reattività
Il risultato della coesistenza di aspetti di reattività pirrolica e aspetti di reattività piridinica è un bilanciamento nella reattività complessiva dell'anello pirazolico, la quale risulta a grandi linee intermedia tra quella del pirrolo e quella della piridina. Infatti, il pirazolo non presenta complicazioni nel sopportare ambienti decisamente acidi, come invece accade per il pirrolo e, d'altro canto, non è segnatatamente disattivato per le sostituzioni elettrofile, come invece si riscontra per la piridina, specialmente in ambiente fortemente acido;[18] Nel pirazolo la posizione favorita per le sostituzioni elettrofile, in particolare nitrazione e solfonazione, è la 4.[18] Come nel caso della piridina, su di esso è anche possibile fare anche sostituzioni nucleofile aromatiche, sebbene molto meno facilmente; in tali casi le posizioni favorite dei gruppi uscenti risultano la 3 e la 5.[19]
Tautomeria
Questa molecola è soggetta ad un equilibriotautomerico per il quale N pirrolico e N piridinico si scambiano di ruolo in seguito alla migrazione di un protone (H+) dall'uno all'altro (e viceversa) e successiva riorganizzazione interna:
1H-C3H4N2 ⇄ 2H-C3H4N2
Ciò comporta anche il passaggio di un eventuale sostituente posizionato in 3 alla posizione 5, o viceversa; pertanto, il 3-metilpirazolo coesiste con il 5-metilpirazolo (un liquido a T ambiente) e così pure qualsiasi altro schema di sostituzioni non simmetriche rispetto ai due atomi di azoto. Analoga tautomeria si ha nel suo isomero imidazolo. Nel pirazolo entrambi i tautomeri 1H e 2H sono presenti in equilibrio in quantità equimolecolare, essendo essi tra loro autotropi.[20]
Proprietà acido-base
Grazie alla presenza dell'azoto piridinico il pirazolo in acqua si comporta come base, però molto debole (pKb = 11,48), decisamente più debole della piridina (pKb = 8,77), per il fatto che qui l'azoto che si protona ha vicino a sé un altro azoto (effetto induttivo -I), invece che un carbonio, che è meno elettronegativo. Pertanto, la sua protonazione è quantitativa solo con acidi forti, dando così il suo acido coniugato (pKa = 2,52),[21] cioè lo ione pirazolio C3H5N2+. Questo è uno ione altamente simmetrico, gruppo puntualeD2h,[22] ed è anch'esso aromatico. Per confronto, il suo isomero strutturale imidazolo, con i due atomi di azoto in posizione 1,3, quindi con un carbonio in mezzo e possibilità di delocalizzare la carica positiva su entrambi gli azoti, risulta alquanto più basico (pKb = 7,05), anche rispetto alla stessa piridina.
Per la presenza dell'NH pirrolico il pirazolo può contemporaneamente comportarsi da acido, anche se molto debole (pKa = 14,21)[23], ma comunque decisamente più forte rispetto al pirrolo (pKa = 17,5[24]). In tal modo il pirazolo può essere deprotonato efficacemente a dare ione pirazolato (anch'esso aromatico) C3H3N2− ricorrendo all'uso di basi forti (es. KH, NaNH2).
Chimica ionica in fase gassosa
La molecola del pirazolo presenta un potenziale di ionizzazione di 9,38 eV[25], apprezzabilmente maggiore di quello dell'imidazolo (8,81 eV[26]) e leggermente maggiore della piridina (9,26 eV[27]).
L'affinità protonica del pirazolo, una misura della sua basicità intrinseca, ammonta a 894,1 kJ/mol, alquanto minore dell'imidazolo (942,8 kJ/mol) e della piridina (930 kJ/mol), ma comunque ben superiore a quella della molecola di acqua (691 kJ/mol), che quindi è molto meno basica.[28]
La forza come acido del pirazolo in fase gassosa è misurata dalla variazione di entalpia standard della reazione di deprotonazione e questa è pari a 1.479 ± 10 kJ/mol,[29] mentre quella relativa all'imidazolo è 1.464,1 ± 3,0 kJ/mol.[30] Quindi, rispetto all'imidazolo, il pirazolo è meno basico (per assunzione di H+) e meno acido (per cessione di H+). Entrambi sono molto più acidi dell'acqua (1.633,141 kJ/mol).[31]
Legante e precursore dei pirazolilborati
Questo ione pirazolato [C3H3N2]- è un leganteanionicobidentato (entrambi gli N hanno una coppia solitaria) che forma facilmente complessi a ponte con ioni metallici (pirazolati metallici), spesso polinucleari e polimerici.[32]
Il pirazolo (Pz-H) reagisce con i boroidruri di metalli alcalini MBH4 (più comunemente, M = Li, Na, K) per dare, in sequenza, a temperature crescenti, quattro composti salini bianchi (incolori) che sono: mono(pirazolil)borato M+(PzBH3)- (difficilmente isolabile), bis(pirazolil)borato M+(Pz2BH2)-, tris(pirazolil)borato M+(Pz3BH)- e infine tetrakis(pirazolil) borato M+(Pz4B)-. In ognuno di questi stadi viene eliminata una molecola di idrogeno (è come se un H+ dell'NH pirrolico del pirazolo e un H – del boroidruro si unissero a dare H2, sebbene il meccanismo sia concertato e parecchio più complesso). La reazione è scematizzabile come nel seguente esempio:
KBH4 + 4 Pz-H → (180-210 °C) K+(Pz3BH)- + 3 H2↑ + Pz-H (la quarta mole di pirazolo è necessaria perché fa da solvente)
Lo ione tris(pirazolil)borato così prodotto, noto in letteratura chimica con il simbolo Tp, è un complessante trischelante monoanionico, molto versatile e di vaste applicazioni in chimica inorganica e organometallica. I trispirazolilborati[33][34] fanno parte della più ampia classe dei leganti detti scorpionati.[35][36] Con molti ioni metallici dipositivi (M++) si ha la formazione di complessiottaedrici (per lo più con distorsione trigonale, simmetria D3d), neutri, solubili in solventi organici anche poco polari e non in acqua, aventi formula generale M(Tp)2.
A titolo esemplificativo prendiamo il caso di Fe++, uno ioneparamagnetico (configurazione d6 ad alto spin, 4 elettroni spaiati). Se si mescolano soluzioni acquose di cloruro ferroso (o nitrato, solfato, etc.) e di tris(pirazolil)borato di potassio a T ambiente si ha la precipitazione del complesso rosa-viola bis[tris(pirazolil)borato]ferroso che, in questo caso, risulta diamagnetico. Non ci sono più elettroni spaiati, si è avuta per lo ione Fe++ inversione di spin con conseguente notevole accorciamento (~19 pm, 0,19 Å) del suo raggio ionico. La reazione di formazione è:
In questo complesso lo ione Fe++ è circondato da 6 N piridinici dei 6 pirazoli (che gli donano i loro doppietti liberi) ed è quindi coordinativamente saturo; inoltre, la sua carica è bilanciata dalle 2 cariche negative che risiedono formalmente sui 2 atomi di boro e tutto il complesso è una molecola apolare[37][38].
Le molecole di interesse farmacologico che hanno per base il pirazolo sono detti pirazoli in gergo farmaceutico e se hanno effetti psicoattivi sull'uomo sono classificati come alcaloidi.
Derivati e usi
Composti strutturalmente derivati sono le tre pirazoline isomere del pirazolo monoidrogenato, e la pirazolidina (una idrazina ciclica, pirazolo bisidrogenato); l'indazolo, un anello benzenico fuso con un anello pirazolico; i pirazoloni sono chimicamente degli analoghi pirazolici dei fenoli, ma con tautomeria più spostata verso la forma chetonica; uno di questi è il fenazone, farmaco antipiretico.
^ab Vishnu Ji Ram, Arun Sethi, Mahendra Nath e Ramendra Pratap, Chapter 5 - Five-Membered Heterocycles, in The Chemistry of Heterocycles, Elsevier, 2019, pp. 302-303, DOI:10.1016/B978-0-08-101033-4.00005-X.
^ab R. Fusco, G. Bianchetti e V. Rosnati, CHIMICA ORGANICA, volume secondo, L. G. Guadagni, 1975, p. 449.
^ R. Fusco, G. Bianchetti e V. Rosnati, CHIMICA ORGANICA, volume secondo, L. G. Guadagni, 1975, p. 456.
^ José Elguero, Alan Katritzky e Olga Denisko, Prototropic Tautomerism of Heterocycles: Heteroaromatic Tautomerism - General Overview and Methodology, collana ADVANCES IN HETEROCYCLIC CHEMISTRY, VOL. 76.
^(EN) J. Elguero, 4.04, in Pyrazoles and their Benzo Derivatives, Comprehensive Heterocyclic Chemistry, vol. 5, Elsevier, 1984, p. 223-225, ISBN978-0-08-096519-2.
^(EN) Adam J. Gianola, Takatoshi Ichino e Shuji Kato, Thermochemical Studies of Pyrazolide, in The Journal of Physical Chemistry A, vol. 110, n. 27, 1º luglio 2006, pp. 8457–8466, DOI:10.1021/jp057499+. URL consultato il 23 agosto 2023.
^ Trofimenko Swiatoslaw, Scorpionates: The Coordination Chemistry Of Polypyrazolylborate Ligands, World Scientific, 16 agosto 1999, ISBN978-1-78326-199-4.
^ S. Trofimenko, Boron-Pyrazole Chemistry, in Journal of the American Chemical Society, vol. 88, n. 8, 1º aprile 1966, pp. 1842–1844, DOI:10.1021/ja00960a065. URL consultato il 20 giugno 2020.