In fisica, la meccanica del corpo continuo, o semplicemente meccanica del continuo, è la branca della meccanica classica e della meccanica statistica che studia il comportamento di corpi continui, cioè sistemi fisici macroscopici nei casi in cui la dimensione dei fenomeni osservati sia tale che questi non siano affetti dalla struttura molecolare della materia e per il quale si assume che la materia sia distribuita uniformemente e che riempia lo spazio che il corpo occupa. In modo più formale, si definisce corpo continuo un corpo i cui punti materiali sono identificabili con i punti geometrici di una regione regolare dello spazio fisico, e dotati di massa per i quali esista una funzionedensità di massa che ne possa rappresentare la misura.
Una classificazione dei modelli di corpi continui può essere fatta sulla base della dimensione della regione dello spazio da essi occupati. Rientra tra i modelli tridimensionali il continuo di Cauchy, che rappresenta il modello di corpo continuo più noto e importante della disciplina, tanto che molte volte il termine meccanica del continuo è sinonimo di meccanica del continuo di Cauchy. Rientra ancora tra i modelli tridimensionali il modello di continuo polare di Cosserat, con una struttura locale più ricca di quella puntuale del modello di Cauchy, espressa anche in termini di orientazione dei suoi punti materiali. In meccanica delle strutture sono largamente utilizzati, per la maggiore semplicità, sia continui bidimensionali, ad esempio lastre, piastre e gusci, che continui monodimensionali, ad esempio, il modello strutturale di trave studiata in scienza delle costruzioni.
Relazioni della meccanica del continuo
Lo studio del comportamento meccanico dei corpi continui si basa sulla caratterizzazione cinematica del corpo continuo (configurazione, deformazione, moto) e lega tali nozioni del corpo alla massa assegnata su di esso e alle forze a esso applicate. Tali relazioni sono di due generi:
di tipo generale, o equazioni fondamentali, comuni a tutti i corpi continui;
di tipo particolare, o leggi costitutive, che differenziano una classe di corpi continui da un'altra.
Nelle seconde l'attenzione è posta nello sviluppo delle cosiddette leggi costitutive che caratterizzano il comportamento di specifici materiali ideali costituenti il corpo: il solido perfettamente elastico e il fluido viscoso ne sono ben noti esempi.
Dal punto di vista matematico, le equazioni fondamentali della meccanica del continuo prima menzionate possono essere sviluppate in due formulazioni diverse ma equivalenti. La prima, in forma integrale o globale, deriva dall'applicazione dei principi di base a un porzione finita di volume del corpo. L'altra, in forma differenziale o di campo, porta a equazioni (differenziali alle derivate parziali) risultanti dall'applicazione dei principi di base a elementi di volumi molto piccoli (infinitesimi).
La meccanica del continuo tratta quantità fisiche, di solidi e fluidi, che non dipendono dal sistema di coordinate in cui vengono osservate. Queste quantità sono convenientemente rappresentate attraverso tensori, cioè oggetti matematici indipendenti dal sistema di coordinate. Pertanto le relazioni della meccanica del continuo hanno carattere tensoriale. Ai fini computazionali, questi tensori possono essere espressi in particolari sistemi di coordinate.