Szabályos feltételes eloszlás

Egy valószínűségi változó szabályos feltételes eloszlása a valószínűségszámításban a valószínűségi változó eloszlását általánosítja. Tekintetbe veszi azt az információt, amit a lehetséges kimenetelekről tudunk. A Bayes-statisztika és a sztochasztikus folyamatok elméletében fontos. Szemben a közönséges feltételes eloszlással a szabályos feltételes eloszlást a feltételes várható értékkel definiálják, ezzel annál lényegesen általánosabb.

Definíció

Adva legyen egy valószínűségi mező, egy mértéktér és egy rész-σ-algebrája. Továbbá legyen egy valószínűségi változó -ban szerint.

Ekkor egy szerinti Markov-magja az valószínűségi változó -re vett feltételes eloszlásának szabályos verziója, ha

minden esetén -majdnem mindenütt -ban.

Itt a feltételes valószínűség, amit feltételes várható értékkel definiálnak.

A függvény definíciójában szereplő feltételek a következőket is jelentik:

  • Minden esetén valószínűségi mérték -n.
  • Minden -mérhető függvény -n.
  • Minden és minden

esetén .

Létezése

Ha a valós számokat a Borel-algebrával látjuk el, akkor valós értékű valószínűségi változóknak mindig van szabályos feltételes eloszlása. Általában, Borel-terekből származó értékeket felvevő valószínűségi változóknak mindig van szabályos feltételes eloszlása. Erre példák a valós valószínűségi vektorváltozók -ben a Borel-algebrával, illetve azok a valószínűségi változók, amelyek lengyel terekből vesznek fel értékeket.

Példa

Adva legyen két valós valószínűségi változó az közös sűrűségfüggvénnyel a Lebesgue-mérték szerint. Ekkor az feltéve szabályos feltételes eloszlás sűrűségfüggvénye

,

vagyis

.

Itt a peremeloszlás sűrűségfüggvénye. Ez a peremeloszlás lehet nulla, de ez nem probléma, mivel ez csak egy -nullmértékű halmazon fordulhat elő.

Feltételes várható értékek kiszámítása

Ha egy integrálható valós valószínűségi változó feltételes eloszlásának -re vett szabályos verziója, akkor -re vett feltételes várható értéke

-majdnem minden esetén.

Változatai

A feltételes várható érték változataihoz hasonlóan a szabályos feltételes eloszlásnak is definiálhatók különböző változatai, amelyek mind visszavezethetők a fenti definícióra.

  • Valószínűségi változók bevezetése nélkül definiálható szabályos feltételes eloszlása adott -re Markov-magként, mint

-majdnem minden és minden esetén.

  • Ha egy másik valószínűségi változója -nak egy további mértéktéren, akkor az σ-algebra helyettesíthető az valószínűségi változó által generált generált σ-algebrával, hogy megkapjuk az feltéve szabályos feltételes eloszlást.

Források

  • Achim Klenke. Wahrscheinlichkeitstheorie, 3., Berlin Heidelberg: Springer-Verlag (2013) 
  • Ludger Rüschendorf. Mathematische Statistik. Berlin Heidelberg: Springer Verlag (2014) 

Fordítás

Ez a szócikk részben vagy egészben a Reguläre bedingte Verteilung című német Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.