Repedéses csillaggomba

Repedéses csillaggomba
Rendszertani besorolás
Ország: Gombák
Törzs: Bazídiumos gombák
Osztály: Agaricomycetes
Rend: Boletales
Család: Diplocystaceae
Nemzetség: Astraeus
Tudományos név
Astraeus hygrometricus
(Pers.) Morgan (1889)
Hivatkozások
Wikifajok
Wikifajok

A Wikifajok tartalmaz Repedéses csillaggomba témájú rendszertani információt.

Commons
Commons

A Wikimédia Commons tartalmaz Repedéses csillaggomba témájú médiaállományokat és Repedéses csillaggomba témájú kategóriát.

A repedéses csillaggomba (Astraeus hygrometricus) a Diplocystaceae családba tartozó, az egész világ mérsékelt és trópusi övi területein elterjedt, homokos talajú erdőkben élő, nem ehető gombafaj.

Megjelenése

A repedéses csillaggomba termőteste fiatalon gömb alakú, átmérője 1-3 cm, félig a talajban található. Színe krémszín. Növekedése során a külső burok csillagszerűen, 6-15 lebenyre felszakad és kiterül, eközben a termőtestet kihúzza a földből. A lebenyek felső felülete krémszínű, később sötétbarna vagy fekete, hálózatosan repedezett. Nedvesen hajlékonyak és szétterülnek, szárazon merevek, bőrszerűek és ráhajlanak a termőtestre. A kissé lapítottan gömbölyű termőtesten maradó pergamenszerű belső burok (endoperídium) eleinte krémszínű, majd sötétbarnára/feketére sötétedik. A spórák érésekor csúcsán szabálytalan nyílás (perisztómium) keletkezik, ezen keresztül távoznak a spórák.

Belseje fiatalon fehér és húsos; éretten csokoládébarna és porszerű. Íze és szaga nem jellegzetes.

Spórapora barna. Spórája gömbölyű, felszínét sűrűn lekerekített végű tüskék borítják, mérete 7-10 µm.

Hasonló fajok

A többi csillaggombával téveszthető össze.

Elterjedése és termőhelye

Az egész világ mérsékelt övi és trópusi zónáiban előfordul. Magyarországon az egyik leggyakoribb csillaggomba.

Különböző lombos és tűlevelű fákkal létesít ektomikorrhizális kapcsolatot. Erdőkben található meg, inkább homokos talajon, egyesével vagy kisebb csoportokban. Júliustól októberig terem.

Nem ehető.

Kapcsolódó cikkek

Források

Read other articles:

R. BalakrishnanLahirBangalore, KarnatakaNama lainR. BalkiPekerjaanKetua dan CEO Lowe Lintas, sutradara, penulis latarSuami/istriGauri Shinde (2007-sekarang) R. Balakrishnan, yang lebih dikenal sebagai R. Balki (lahir di Bangalore, Karnataka),[1][2] adalah seorang pembuat film, penulis latar dan Ketua dan Pejabat Tertinggi Kreatif dari agensi periklanan Lowe Lintas (India).[3] Ia paling dikenal karena menyutradarai Cheeni Kum (2007) dan Paa (2009).[4][...

 

 

Untuk kegunaan lain, lihat Peta (disambiguasi). Peta dunia oleh Gerard van Schagen, Amsterdam, 1689 Peta dunia dari CIA World Factbook 2016 Peta adalah gambaran permukaan bumi yang ditampilkan pada suatu bidang datar dengan skala tertentu.[1] Peta bisa disajikan dalam berbagai cara yang berbeda, mulai dari peta konvensional yang tercetak hingga peta digital yang tampil di layar komputer. Istilah peta berasal dari bahasa Yunani mappa yang berarti taplak atau kain penutup meja. Namun se...

 

 

Rufus Rufus 4.0.2035TipeAplikasi portabel dan perangkat lunak bebas Versi pertama12 April 2011 Versi stabil 4.4 (17 Januari 2024) GenreLive USBLisensiGNU GPL 3+[1]BahasaDaftar bahasa Arabic, Bulgarian, Chinese Simplified, Chinese Traditional, Croatian, Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hebrew, Hungarian, Indonesian, Italian, Japanese, Korean, Latvian, Lithuanian, Malay, Norwegian, Persian, Polish, Portuguese Brazilian, Portuguese Portugal, Romanian, Russia...

صورة لطبقات ترانزستور ترانزستور الغشاء الرقيق [1] (اختصاراً TFT) هو نوع خاص من ترانزستورات موسفت (ترانزستور الأثر الحقلي للأكاسيد المعدنية لأشباه الموصلات)،[2] والذي يحضر من ترسيب غشاء رقيق من طبقة شبه موصل فعال ومكونات أخرى على ركازة داعمة. كان بول ويمر Paul K. Weimer أول من...

 

 

Friedrich Ratzel Friedrich Ratzel (kelahiran Jerman 30 Agustus 1844) adalah wartawan dan penulis beberapa buku tentang etnologi, geografi manusia, dan politik.[1] Friedrich Ratzel merupakan pencetus teori ruang (lebensraum) dalam bidang sosial kebangsaan.[1] Kehidupan Friedrich lahir pada 30 Agustus 1844, di Karlsruhe, Jerman.[2] Friedrich Ratzel memiliki bapak seorang manajer staf rumah tangga Grand Duke dari Baden.[2] Dia bersekolah perguruan tinggi Karlsruhe...

 

 

Pour les autres membres de la famille, voir Jaurès. Cet article possède un paronyme, voir Jean Laurès. Jean Jaurès Jean Jaurès en 1904(photographie de Nadar). Fonctions Député français 1er juin 1902 – 31 juillet 1914(12 ans, 1 mois et 30 jours) Élection 27 avril 1902 Réélection 6 mai 190624 avril 191026 avril 1914 Circonscription Tarn Législature VIIIe, IXe, Xe et XIe (Troisième République) Groupe politique SP (1902-1906)SU (1906-1910)PS (1910-1914) 8 janvier 1...

Russian poet Maxim Amelin at the 6th Moscow International Book Festival in 2011 Maxim Albertovich Amelin (Russian: Максим Альбертович Амелин; born 7 January 1970) is a Russian poet, critic, essayist, editor, and translator. He was born in Kursk, Russia, where he graduated from the Kursk Commercial College (Курский торговый техникум) and did his military service in the Soviet Army. He studied in the Maxim Gorky Literature Institute in Moscow from 1...

 

 

In algebra, un campo di spezzamento (o campo di riducibilità completa) di un polinomio p ( x ) {\displaystyle p(x)} , definito su un campo K {\displaystyle K} , è la più piccola estensione di K {\displaystyle K} che contiene tutte le radici di p ( x ) {\displaystyle p(x)} . Indice 1 Definizione 2 Costruzione 3 Unicità 4 Esempi 5 Bibliografia 6 Collegamenti esterni Definizione Sia K {\displaystyle K} un campo e p ( x ) {\displaystyle p(x)} un polinomio a coefficienti in K {\displaystyle K}...

 

 

Australian entertainer (1924–1999) Bobby LimbBobby Limb, Clovelly, Sydney, 1952BornRobert Limb(1924-11-10)10 November 1924Adelaide, South Australia, AustraliaDied11 September 1999(1999-09-11) (aged 74)Sydney, New South Wales, AustraliaOccupationsEntertainerradio personalitytelevision personalitycomedianpresenterband leadermusicianproduction company co-founderYears active1941−1982SpouseDawn Lake Robert Limb AO, OBE (10 November 1924 – 11 September 1999) was an Australian-born e...

American physician (1844–1891) John C. HandyBorn(1844-10-20)October 20, 1844Newark, New JerseyDiedSeptember 24, 1891(1891-09-24) (aged 46)Tucson, Arizona TerritoryCause of deathKilled in self-defenseOccupationPhysicianKnown forFounder, Society of Arizona Pioneers; Founder, Pima County Medical Society; Killed by wife's divorce attorneySpouse(s)unnamed Apache woman; Mary Page John Charles Handy (October 20, 1844 – September 24, 1891) was a prominent physician who attacked his...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) دوري آيسلندا الممتاز 1928 تفاصيل الموسم دوري آيسلندا الممتاز  النسخة 17  البلد آيسلندا  المنظم اتحا�...

 

 

Perception of events' position in time The study of time perception or chronoception is a field within psychology, cognitive linguistics[1] and neuroscience that refers to the subjective experience, or sense, of time, which is measured by someone's own perception of the duration of the indefinite and unfolding of events.[2][3][4] The perceived time interval between two successive events is referred to as perceived duration. Though directly experiencing or under...

DC Comics character Comics character Rose WilsonRose Wilson as the Ravager. Art by ACO.Publication informationPublisherDC ComicsFirst appearanceDeathstroke #15 (October 1992)Created byMarv WolfmanArt NicholsIn-story informationAlter ego Rose Wilson (current continuity) Rose Wilson-Worth (previous continuity) SpeciesMetahumanPlace of originCambodiaTeam affiliationsTeen TitansDefianceN.O.W.H.E.R.E.League of AssassinsPartnershipsDeathstrokeDick GraysonJason ToddTim DrakeCassandra CainDamian Wayn...

 

 

Military operation Battle of LyubanPart of the Eastern Front of World War IIBattle of the Volkhov, 10 January – 28 June 1942Date7 January 1942 – 30 April 1942 (3 months, 3 weeks and 2 days)LocationSouthern shore of Lake Ladoga, near LyubanResult German victory Destruction of the second shock armyBelligerents  Germany  Soviet UnionCommanders and leaders Georg von Küchler Kirill MeretskovMikhail KhozinAndrey VlasovLeonid GovorovUnits involved Army Group North 18th ...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bük – news · newspapers · books · scholar · JSTOR (April 2020) (Learn how and when to remove this message) Place in Vas, HungaryBük SealLocation of Vas county in HungaryBükLocation of BükCoordinates: 47°23′04″N 16°45′03″E / 47.3844...

Voce principale: Associazione Calcio Prato. Associazione Calcio PratoStagione 1987-1988Sport calcio Squadra Prato Allenatore Piero Lenzi Presidente Andrea Toccafondi Serie C15º posto nel girone A. Maggiori presenzeCampionato: Napolitano (34) Miglior marcatoreCampionato: Rossi (4) 1986-1987 1988-1989 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Associazione Calcio Prato nelle competizioni ufficiali della stagione 1987-1988. Indice 1 Rosa 2...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2018) سو جونز معلومات شخصية الميلاد القرن 20  ويلز  مواطنة أستراليا ويلز  الحياة العملية المهنة ممثلة،  وممثلة أفلام  اللغات الإنجليزية  المواقع IMDB...

 

 

Italian engineer This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (August 2021) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be chal...

Insieme convesso. Insieme non convesso. In uno spazio euclideo un insieme convesso è un insieme nel quale, per ogni coppia di punti, il segmento che li congiunge è interamente contenuto nell'insieme. Esempi di insiemi convessi sono cerchi, sfere, cubi, piani, semipiani, trapezi, mentre non lo sono archi di circonferenze, tori o qualunque insieme che contenga buchi o incavature o che non sia connesso. In tre dimensioni, esempi di insiemi convessi sono la sfera, il cubo, il paraboloide, mentr...

 

 

Russian general of the infantry This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Nikolay Muravyov-Karsky – news · newspapers · books · scholar · JSTOR (Mar...