מספר אלגברי הוא מספר ממשי או מרוכב המהווה שורש של פולינום בעל מקדמים רציונליים (או שלמים, אין הבדל). בפרט, כל מספר רציונלי הוא אלגברי, משום שהוא פותר את המשוואה . מספרים ממשיים ומרוכבים שאינם אלגבריים, כגון π ו- e, נקראים מספרים טרנסצנדנטליים.
לדוגמה, יחס הזהב, , הוא מספר אלגברי, מכיוון שהוא שורש של הפולינום . כלומר, זהו ערך עבור x שעבורו הפולינום מוערך לאפס. כדוגמה נוספת, המספר המרוכב הוא אלגברי כי הוא שורש של .
אוסף כל המספרים האלגבריים מהווה שדה, הנקרא שדה המספרים האלגבריים. שדה זה סגור אלגברית: השורשים של פולינום בעל מקדמים אלגבריים הם בעצמם אלגבריים.
אוסף המספרים האלגבריים הוא בן מנייה, בעוד שהמשלים לו אינו בן מנייה. תכונה זו הוכחה על ידי גאורג קנטור במאה ה-19. במובן זה ישנם הרבה יותר מספרים שאינם אלגבריים מאשר מספרים אלגבריים, למרות שבאופן מעשי קשה ביותר להוכיח שמספר נתון (כגון e או פאי) אינו אלגברי (להוכחות ראו טרנסצנדנטיות של e ומשפט לינדמן).
דוגמאות.
- הוא מספר אלגברי - הוא מאפס את הפולינום .
- הוא מספר אלגברי - הוא מאפס את הפולינום .
- המספרים , ו- אינם אלגבריים.
ההגדרה המובאת כאן מסתפקת בכך שמספר אלגברי יהיה שורש לפולינום בעל מקדמים רציונליים. הגדרה מקובלת אחרת דורשת שהמספר יהיה שורש לפולינום בעל מקדמים שלמים. שתי ההגדרות שקולות זו לזו, משום שפולינום במקדמים רציונליים אפשר להפוך לפולינום במקדמים שלמים על ידי כפל בגורם משותף. את ההגדרה הראשונה אפשר להכליל למושג איבר אלגברי בהרחבה כללית של שדות; אחרי הכל, מספר אלגברי אינו אלא איבר אלגברי של שדה המספרים המרוכבים מעל שדה המספרים הרציונליים. באופן צורף, ההגדרה השנייה הולמת אם חושבים על שדה המספרים המרוכבים כאלגברה מעל חוג המספרים השלמים: האיברים האלגבריים בהרחבה זו הם בדיוק המספרים האלגבריים.
שלמים אלגבריים
- ערך מורחב – חוג השלמים האלגבריים
מספר (מרוכב) המהווה שורש של פולינום מתוקן (כלשהו) בעל מקדמים שלמים, נקרא שלם אלגברי. הסכום, ההפרש והמכפלה של מספרים שלמים אלגבריים הם שוב מספרים שלמים אלגבריים, מה שאומר שאוסף המספרים השלמים האלגבריים מהווה חוג.
השם מספר שלם אלגברי נובע מהעובדה שהמספרים הרציונליים היחידים שהם מספרים שלמים אלגבריים הם המספרים השלמים, ומכיוון שהמספרים השלמים האלגבריים בכל שדה מספרים דומים במובנים רבים למספרים השלמים. תורת המספרים האלגברית, העוסקת בתכונות של שלמים אלגבריים והמבנים הקשורים אליהם, היא הכללה של תורת המספרים הקלאסית.
איבר הוא שלם אלגברי אם ורק אם הפולינום המינימלי שלו (מעל הרציונליים) הוא בעל מקדמים שלמים.
הכללה
על איברים אלגבריים בהרחבה של שדות, או באופן כללי יותר באלגברה, ראו בערך איבר אלגברי.
ראו גם
קישורים חיצוניים