מכניקת הזורמים

מכניקת הזורמים היא ענף פיזיקלי מתחום מכניקת הרצף העוסק בחקר הזורמים (קרי: נוזלים וגזים, בהקשרים מסוימים אף פלזמה), תכונותיהם ובכוחות הפועלים עליהם. תורה זו מאפשרת להסיק מידע על תנועתם של הזורמים, הנקראת "זרימה", ולהפיק יישומים חשובים רבים בתחומי הנדסת המים, הנדסת אווירונאוטיקה והנדסת המכונות. לענף תחומי משנה נוספים, כאשר העיקריים שבהם הם הידרודינמיקה החוקרת את תנועת הנוזלים, הידרוסטטיקה החוקרת את מאפייני הנוזלים הנמצאים במנוחה והאווירודינמיקה החוקרת את תנועתם של גזים.

מכניקת הזורמים היא ענף פיזיקלי ותיק אשר ראשיתו עוד בימי יוון העתיקה, אז חקר ארכימדס את תכונותיהם של נוזלים ופיתח את בורג ארכימדס. מאז, התפתח ענף זה רבות והוא מהווה שדה מחקר פעיל גם היום. הבסיס המתמטי העומד מאחורי מכניקת הזורמים מורכב מאוד לעיתים וחלק ממשוואותיה אינן ניתנות לפתרון אנליטי. עם ההתקדמות הטכנולוגית והתפתחות המחשוב, מנוצלות כיום יכולות מחשוב לביצוע חישובים נומריים וניתוח מערכות מורכבות המתארות זורמים.

מנומטר, כלי המשמש למדידת לחץ

היסטוריה

אנימציה המדגימה את עקרון פעולתו של בורג ארכימדס

הראשון שעסק במכניקת הזורמים באופן אשר הותיר אחריו חותם היסטורי היה ארכימדס, אשר בין גילוייו העיקריים נמנים חוק ארכימדס ובורג ארכימדס. ברחבי הקיסרות הרומית נעשה שימוש במכונות הידראוליות נוספות לצורך הספקת ושינוע מים. המהנדס הרומי ויטרוביוס (Vitruvius) הציע לראשונה את טחנת המים במאה הראשונה לפני הספירה. מאז, במשך שנים רבות, נותר ענף זה ב"תרדמת" עד להופעת מחקריו של המתמטיקאי והפיזיקאי אוונגליסטה טוריצ'לי, אשר בשנת 1643 המציא את הברומטר וניסח את עקרון טוריצ'לי. החוקר הצרפתי בלז פסקל ניסח באותה תקופה את חוק פסקל, המהווה את אחד מחוקי הבסיס של ההידרוסטטיקה.

"זריקת מרץ" לחקר תחום הזורמים התקבלה עם ניסוח חוקי המכניקה החשובים על ידי אייזק ניוטון, אשר סיפק את הפורמליזם הפיזיקלי הדרוש. הפיזיקאי והמתמטיקאי לאונרד אוילר, אשר חי במאה ה-18, ניסח על סמך פורמליזם זה את משוואות אוילר, המתארות זורמים. בשנת 1739 פרסם דניאל ברנולי את משוואת ברנולי, המהווה את אחד מהכלים החשובים בהידרודינמיקה ובאווירודינמיקה (ראו בהמשך).

הראשונים שחקרו את השפעותיו של החיכוך על הזרימה היו, באופן בלתי תלוי, המדען הצרפתי ז'אן לואי מארי פואזיי, אשר חקר את תנועת הדם בשנת 1839, וגוטהילף היינריך לודוויג האגן, בשנת 1840. המחקר בדבר השפעות הצמיגות על הזרימה התקיים אף הוא באופן בלתי תלוי על ידי קלוד לואי מרי אנרי נאוויה בשנת 1827 ועל ידי החוקר הבריטי גבריאל סטוקס בשנת 1845. הידע אשר צברו מנוסח במשוואות נאוויה-סטוקס.

מחקרים אשר בוצעו במאה ה-19 על זרימה במהירויות גבוהות עם חיכוך בלתי זניח עמדו בסתירה, לכאורה, לצפי על פי עקרון ברנולי. את הפתרון לסתירה זו הסביר בשנת 1883 אוסבורן ריינולדס , אשר הראה כי קיימים שני "משטרי זרימה" הנבדלים זה מזה בתכונותיהם. באופן כללי, מחקריו מראים כי במהירויות גבוהות הזרימה מפסיקה להיות "לוחית" והופכת "עירבולית" יותר, כך שישנו קושי בתיאור אנליטי מלא שלה. במהלך המאה ה-19 גבר העניין בזרימת האוויר, וכך נוצלו עקרונות מכניקת הזורמים על ידי חלוצי התעופה הראשונים, ביניהם האחים רייט.

חלק מהקושי הרב בניתוח זרימה של זורמים צמיגיים נפתר על ידי עבודתו של לודוויג פרנדטל, אשר פרסם בשנת 1904 מודל המפשט את ניתוח המערכות מסוג זה על ידי חלוקת הזורם לשני חלקים, חיצוני ופנימי - בחיצוני מרוכזת רוב השפעת הצמיגות, ובפנימי ניתן להזניחה. מודל זה, הפשוט יותר מזה אשר מספקת משוואת נאוויה-סטוקס, איפשר התקדמויות נוספות על ידי חוקרים בתחום. בעידן המודרני, עם הופעת המחשוב, נוצר פתח לשימוש בכוחו החישובי הרב לצורך תיאור מערכות זורמים אשר להן תיאור מתמטי מורכב.

הנחות היסוד

את תנועתם של גופים מוצקים ניתן לתאר על ידי כלים של המכניקה הקלאסית (בפרט מכניקת הגוף הקשיח) תחת הנחה שצורתם אינה משתנה תמידית. לעומתם, ייחודיותה של מכניקת הזורמים נובעת מן העובדה שלזורמים אין צורה קבועה, שכן הם מקבלים את צורת הכלי בו הם נמצאים. יתר על כן, לגז אין אף נפח קבוע; בעוד שמוצקים, לרוב, בלתי-דחיסים, גזים ואף חלק מהנוזלים הם דחיסים, ולכן בעת ניתוח תנועתם ניתנת תשומת הלב אף לעובדה הזו (הגם שישנם מודלים בהם מוזנחת תכונה זו). תכונה נוספת של הזורמים היא הצמיגות, המתארת את התנגדותו הפנימית של הזורם לזרימה, זוהי תכונה נוספת עליה ניתנת הדעת בעת ניתוח של מערכות זורמים.

מכניקת הזורמים משתייכת מבחינה רעיונית למכניקת הרצף, אשר בבסיסה עומדת "הנחת הרצף" הקובעת כי לצרכים מסוימים, ובפרט עבור ניתוח תכונות מסוימות של זורמים, ניתן להתייחס אל החומר כאל רציף ולהזניח את מבנהו הפנימי, כלומר – להתעלם מהיותו מורכב ממולקולות. מכניקת הזורמים עושה פעמים רבות שימוש במונח ה"אלמנט" על מנת לתאר חלק קטן מן הזורם ומסתפקת ברמת פירוט זו. הנחת הרצף היא מטבעה מודל המהווה קירוב של המציאות. ככל קירוב, ישנן מספר מגבלות דיוק הנובעות מהשימוש בו, ולכן במקרים בהם השערה זו איננה תואמת את צורכי המשתמש, נעשה הניתוח תוך שימוש בכלים אחרים, בפרט מכניקה סטטיסטית.

נוסף על הנחה זו, מתבסס הניתוח של מערכות זורמים על חוקי השימור הבסיסיים המוכרים מעולם המכניקה, ביניהם שימור המסה ושימור האנרגיה. חוקים נוספים בהם נעשה שימוש שכיח הם החוק השני של ניוטון והחוק השני של התרמודינמיקה.

כלים בסיסיים של מכניקת הזורמים

איור המדגים את חוק הכלים השלובים

בהתבסס על הנחות היסוד אשר תוארו לעיל, נעזרת מכניקת הזורמים במספר כלים לתיאור וניתוח הזורמים. בהתבסס על מאפייני הלחץ והכוחות אשר נלמדים במכניקה הקלאסית, מתקבלים חוקי ההידרוסטטיקה הבסיסיים. כך, למשל, חוק ארכימדס, שהוא אחד מחוקי ההידרוסטטיקה הבסיסיים ביותר, קובע כי כוח הציפה הפועל על גוף שנמצא בתווך (נוזל או גז) שווה למשקלו של תווך בעל נפח זהה. חקר הלחץ ההידרוסטטי מניב מספר תוצאות מעניינות כגון חוק הכלים השלובים וחוק פסקל.

בהתבסס על חוקי השימור הקלאסיים מנוסחים חוקי היסוד של תורת הזורמים תוך התאמתם למונחים המתארים זורמים וזרימה. כך, עבור תיאור התנועה, מתקבלות משוואת הרציפות הנובעת ישירות משימור המסה וכן משוואות התנע. בהידרודינמיקה, עבור ההנחה כי הזורם הוא ברוטרופי, קרי - מניחים כי הצפיפות תלויה בלחץ בלבד ללא תלות בטמפרטורה, בהסתמך על חוקי השימור אשר הובאו לעיל, מתקבלת משוואת ברנולי. חוקים נוספים חשובים המתארים את תנועת הזורם הם חוק פואזי ומשפט סטוקס.

מונחים בסיסיים בתורת הזרימה

על מנת לתאר את תנועתו של הזורם, תחום בו עוסקת ההידרודינמיקה, נעזרים במכניקת הזורמים במספר מונחים נוספים המאפשרים ניתוח וסיווג של הזורם והזרימה.

קווי זרם, קווי מסלול וקווי שיטוח

קו מסלול או קו זרימה הוא עקום המתאר את תנועת החלקיק. נקרא גם "קו חלקיק". כאשר עקום זה קבוע, הזרימה היא זרימה תמידית.

קו זרם הוא עקום המשיק לוקטור המהירות בכל נקודה בזמן מסוים/ מכיוון שקו זרם מתאר תנועה של חלקיקים, אפשר לומר שמסה לא חוצה אותו. טיעון זה ברור יותר כאשר מדובר בזרימה דו-ממדית.

קו שילוח הוא עקום המתאר קבוצת חלקיקים שעברו בפרק זמן מסוים דרך נקודה מסוימת.

משטח זרם או שפופרת זרימה הוא רצף של קווי זרם הצמודים זה לזה. אם נבחר עקום שרירותי שאינו קו זרם, כל קווי הזרם שיעברו דרכו יוצרים משטח זרם. לכן, דרך משטח זרם לא עוברת מסה.

סוגי זורמים

לצורך תיאור תנועתו של זורם יש צורך בתיאור תכונותיו. לצורך זה, מבוצעת מספר הבחנות בין סוגי זורמים שונים. זורם אשר במצב סטטי איננו משנה כמעט את צפיפותו, גם בתנאי לחץ גבוה, נחשב לזורם בלתי דחיס. לעומתו, זורם אשר במצב סטטי צפיפותו משתנה כתוצאה משינוי בלחץ, נחשב לזורם דחיס.

פרמטר נוסף הנחוץ לצורך תיאור הזרימה הוא צמיגות: צמיגות היא התנגדות הזורם לעיבור (שינוי צורה) תחת מאמץ גזירה. הצמיגות נתפסת לעיתים קרובות כסמיכות, או התנגדות למזיגה. הצמיגות מתארת את התנגדותו הפנימית של הזורם לזרימה, וניתן לחשוב עליה כעל מידה של חיכוך. דבש ושמן הם דוגמאות לזורמים צמיגים.

הבחנה נוספת מתבצעת בין נוזל ניוטוני לנוזל לא ניוטוני, כאשר זורם ניוטוני הוא זורם איזוטרופי שבו מאמצי הגזירה נמצאים ביחס ישר לקצב עיבור הגזירה. במילים אחרות, מאמץ על זורם ניוטוני תלוי בקצב העיוות של צורת נפח הזורם (ללא שינוי בנפחו).

סוגי זרימה

ערך מורחב – סוגי זרימה
דוגמה לזרימה טורבולנטית ידועה כ"רחוב הערבולים של קרמן", זרימה המתפתחת סביב גליל במספרי ריינולדס של בין

מתבצעת הבדלה בין מספר סוגי זרימה שונים, על פי מספר פרמטרים.

מבחינת צורת הזרימה, מבחינים בין "זרימה קבועה", לזרימה טורבולנטית. בזרימה קבועה, כיוון הזרימה קבוע בזמן. והוא כאילו הוא עשוי משכבות דקות הנעות במקביל זו לזו. נוחה לחישוב מכיוון שכל הפרמטרים התלויים בזמן או נגזרותיהם - מתאפסים. בזרימה עירובולית, לעומת כך, מתאפיין הזורם בחוסר אחידות מקומית בזמן וב"ערבול" המקנה לזרימה את שמה והזרימה מאופיינת באופי כאוטי.

עבור שני "משטרי הזרימה" לעיל, נמצאו משוואות אמפיריות שונות המתארות בצורה מקורבת את התנהגותם של הזורמים. אבל רק עבור זרימה קבועה ניתן לפתח פתרונות תאורטיים אנליטים מלאים הנובעים מהחוקים הבסיסיים של זרימה.

מבדילים בין שני משטרי הזרימה באמצעות מספר ריינולדס, לרוב אין נקודת מעבר חדה בין שני משטרי הזרימה אלא ישנו תחום של ערכים עבורם הזרימה יכולה להיות או למינרית או טורבולנטית.

יישומים

תרשים המדגים את הגדלים העיקריים במשוואת ברנולי

למכניקת הזורמים יישומים חשובים רבים בתחומי הנדסת המים, הנדסת אווירונאוטיקה, הנדסה כימית והנדסת המכונות בהם אנו עושים שימוש יום-יומי. מכניקת הזורמים משמשת את האנושות מזה זמן רב, החל ממשאבות המים הפשוטות נוסח בורג ארכימדס וכלה בטורבינות המפיקות זרם חשמלי בעזרת עצמתם של זורמים או בלחץ האוויר הפועל על כנף המטוס.

כך, למשל אחד מן העקרונות החשובים בבסיס תורת הזורמים הוא עיקרון ברנולי הקובע כי ככל שמהירות זרימתו של זורם על גבי משטח גבוהה יותר, הזורם יפעיל פחות לחץ על המשטח. עיקרון זה עומד בבסיס אופן פעולתם של כנף המטוס ומפרש הסירה. להרחבה ראה "משוואת ברנולי". חוק פסקל הוא העומד בבסיס עקרון הפעולה של הבוכנה ההידראולית.

ראו גם

עיינו גם בפורטל

פורטל הפיזיקה מהווה שער לחובבי הפיזיקה ולמתעניינים בתחום. בין היתר, בפורטל תוכלו למצוא מידע על פיזיקאים חשובים, על ענפי הפיזיקה ועל תאוריות פיזיקליות.

קישורים חיצוניים

מכניקת הרצף
תחום בפיזיקה העוסק בחומרים רציפים.
מכניקת מוצקים
תחום בפיזיקה העוסק בחומרים רציפים הנמצאים במצב מנוחה.
אלסטיות
מתאר חומרים החוזרים למצב המנוחה, לאחר הסרת המאמצים (לחצים).
פלסטיות
מתאר חומרים המתעוותים לצמיתות לאחר הפעלת רף מסוים של מאמץ.
ראולוגיה
תחום העוסק בחומרים בעלי מאפיינים מוצקים וזורמים.
מכניקת זורמים
התחום בפיזיקה העוסק בחומרים רציפים המתעוותים בחשיפה לכוח.
זורמים לא-ניוטונים חווים את שיעורי המעוות באופן שאינו פרופורציוני למאמץ הגזירה המופעל עליהם.
זורמים ניוטונים חווים את שיעורי המעוות באופן פרופורציוני למאמץ הגזירה המופעל עליהם.

Read other articles:

Keuskupan OberáDioecesis OberensisDiócesis de OberáKatolik Katedral Santo Antonius dari PaduaLokasiNegaraArgentinaProvinsi gerejawiCorrientesStatistikLuas78.074 km2 (30.145 sq mi)Populasi- Total- Katolik(per 2012)275.100203,800 (74.1%)Paroki17InformasiDenominasiKatolik RomaRitusRitus RomaPendirian13 Juni 2009 (14 tahun lalu)KatedralKatedral Santo Antonius dari Padua di OberáKepemimpinan kiniPausFransiskusUskupDamián Santiago BitarUskup agungAndrés Stan...

 

2020 single by OneRepublicDidn't ISingle by OneRepublicfrom the album Human ReleasedMarch 13, 2020Recorded2020Length3:27Label Interscope Mosley Songwriter(s) Ryan Tedder Brent Kutzle Zach Skelton James Abrahart Kyrre Gørvell-Dahll Producer(s) Ryan Tedder Brent Kutzle John Nathaniel OneRepublic singles chronology Wanted (2019) Didn't I (2020) Better Days (2020) Music videoDidn't I on YouTube Didn't I is a song by American band OneRepublic, released as the third single from their fifth studio ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Wiz Khalifa – berita · surat kabar · buku · cendekiawan · JSTOR Wiz KhalifaPenampilan Wiz Khalifa Under the Influence Tour tahun 2012 di Toronto.Informasi latar belakangNama lahirCameron Jibril ThomazLah...

Marc Guéhi Guéhi bermain untuk Chelsea pada 2018Informasi pribadiNama lengkap Addji Keaninkin Marc-Israel Guéhi[1]Tanggal lahir 13 Juli 2000 (umur 23)[2]Tempat lahir Abidjan, Pantai GadingTinggi 182 cm (6 ft 0 in)[2]Posisi bermain Bek tengahInformasi klubKlub saat ini Crystal PalaceNomor 6Karier junior2005–2007 Cray Wanderers2007–2019 ChelseaKarier senior*Tahun Tim Tampil (Gol)2019–2021 Chelsea 0 (0)2020–2021 → Swansea City (pinjaman) ...

 

Questa voce sull'argomento geologia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Nena è un antico supercontinente che consisteva nei cratoni di Arctica, Baltica ed Antartico orientale. Si formò circa 1,8 miliardi di anni fa a partire dal supercontinente della Columbia. Nena è un acronimo che deriva da Nord Europa e Nord America. V · D · MContinenti della Terra Europa Asia Af...

 

2023 American animated superhero TV series My Adventures with SupermanIntro logoGenre Action–adventure Romantic comedy Science fiction Superhero Based onSupermanby Jerry SiegelJoe ShusterDeveloped byJake WyattBrendan ClougherJosie CampbellVoices of Jack Quaid Alice Lee Ishmel Sahid Music byDominic LewisDaniel Futcher[1]Opening themeUp and Away by Kyle Troop & The HereticsCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes10ProductionExecutive pro...

Canada Open 1976 Sport Tennis Data 17 agosto - 23 agosto Edizione 86a Superficie Terra verde Campioni Singolare maschile Guillermo Vilas Singolare femminile Mima Jaušovec Doppio maschile Bob Hewitt / Raúl Ramírez Doppio femminile Cynthia Seiler / Janet Newberry 1975 1977 Il Canada Open 1976 è stato un torneo di tennis giocato sulla terra verde. È stata la 86ª edizione del Canada Open, che fa parte del Commercial Union Assurance Grand Prix 1976 e del Women's International Grand Prix 197...

 

Ambroise Roux-AlphéranBorn29 December 1776Aix-en-ProvenceDied8 February 1858 (1858-02-09) (aged 81)Aix-en-ProvenceNationalityFrenchOccupation(s)HistorianPublic official Ambroise Roux-Alphéran (French pronunciation: [ɑ̃bʁwaz ʁu alfeʁɑ̃]; 1776–1858) was a French public official and historian. Rue Roux-Alphéran Biography Early life Ambroise(-Thomas) Roux-Alphéran was born on 29 December 1776 in Aix-en-Provence.[1] Career He served as clerk of the court of A...

 

2021 filmYuniDirected byKamila AndiniWritten by Kamila Andini Prima Rusdi Produced by Ifa Isfansyah Fran Borgia Birgit Kemner StarringArawinda KiranaCinematographyTeoh Gay HianEdited byLee ChatametikoolMusic byAlexis RaultProductioncompanies Fourcolours Films Akanga Film Asia Manny Films Release dates September 12, 2021 (2021-09-12) (TIFF) December 9, 2021 (2021-12-09) (Indonesia) Running time95 minutesCountries Indonesia Singapore France Australia Langua...

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

Battle during the 2006 Lebanon War Battle of Ayta ash-Sha'bPart of 2006 Lebanon WarDate12 July – 14 August 2006LocationAyta ash-Sha'b, Southern LebanonResult Hezbollah victory Israel failed to capture the town[1]Belligerents Israel Defense Forces HezbollahCommanders and leaders Brig.-Gen. Udi Adam, head of Northern CommandBrig.-Gen. Gal Hirsch,commander of the 91st Div.Col. Ilan Atias, commander of 2nd BrigadeCol. Hagai Mordechai, commander of 35th Brigade UnknownUnits involved 35th...

 

Questa voce sull'argomento piloti di Formula 1 è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Hiroshi Fushida Nazionalità  Giappone Automobilismo Carriera Carriera in Formula 1 Stagioni 1975 Scuderie Maki GP disputati 2 (0 partenze)   Modifica dati su Wikidata · Manuale Hiroshi Fushida (Kyoto, 10 marzo 1946) è un ex pilota automobilistico giapponese. Iscritto con il team Maki al Gran Premio d'Olanda 1975, sebbene qualificato, non ri...

淡江高峰塔倒塌事件高峰塔B座、C座公寓,與倒塌的A座公寓結構類似 (2012)日期1993年12月11日,​30年前​(1993-12-11)时间下午1时35分(马来西亚标准时间,周六)地点 马来西亚雪兰莪淡江(英语:Ulu Klang)山景花园(英语:Taman Hillview)高峰塔坐标3°10′33.4″N 101°45′42.1″E / 3.175944°N 101.761694°E / 3.175944; 101.761694坐标:3°10′33.4″N 101°45′42.1″E&...

 

Rapid transit system in Valencia, Spain Not to be confused with Valencia Metro (Venezuela). MetrovalenciaOverviewOwnerFGVLocaleValencia, SpainTransit typeRapid transit, tramNumber of lines10[1] 6 rapid transit lines (L1, L2, L3, L5, L7, L9) 4 tram lines (L4, L6, L8, L10) Number of stations146 38 underground stations 108 surface stations Daily ridership190,253 (avg. weekday, 2019)Annual ridership69,442,539[2] (2019)Chief executiveAnaís MenguzzatoOperationBegan operation8 Octob...

 

Scottish footballer For other people with the same name, see David Cooper (disambiguation). Davie Cooper Personal informationFull name David Cooper[1]Date of birth (1956-02-25)25 February 1956Place of birth Hamilton, ScotlandDate of death 23 March 1995(1995-03-23) (aged 39)Place of death Glasgow, ScotlandHeight 5 ft 9 in (1.75 m)[1]Position(s) WingerYouth career1972–1974 Hamilton AvondaleSenior career*Years Team Apps (Gls)1974–1977 Clydebank 90 (28)1977...

「水」のその他の用法については「水 (曖昧さ回避)」をご覧ください。 この項目では、水や液状物について説明しています。俗称として用いられるハイドロ(hydraulic)については「油圧」をご覧ください。 「H2O」はこの項目へ転送されています。その他の用法については「H2O (曖昧さ回避)」をご覧ください。 水面から跳ね返っていく水滴 海水 水(みず、(英: water...

 

羅伯特·孟席斯爵士閣下The Rt Hon Sir Robert MenziesKT AK CH FRS QC1952年的孟席斯 第12任澳大利亚总理任期1949年12月19日—1966年1月26日君主佐治六世伊莉莎白二世前任本·奇夫利继任哈羅德·霍爾特任期1939年4月26日—1941年8月26日君主佐治六世前任厄爾·佩吉继任亞瑟·法登 个人资料出生1894年12月20日 英国維多利亞殖民地Jeparit逝世1978年5月15日(83岁) 澳大利亞維多�...

 

Information technology services company specializing in web hosting Endurance International Group, Inc.Traded asNasdaq: EIGI (2013-2021)IndustryInternet hosting servicesPredecessorBizLandFounded1997 (1997)FoundersHari RavichandranRavi AgarwalHeadquartersJacksonville, Florida, USNumber of locationsWorldwideKey peopleJeff Fox (CEO)Marc Montagner (CFO)David Bryson (CLO)Kim Simone (COO)ServicesWeb hosting, domain registration, SEO, email marketingNumber of employeesOver 2,500 (2016)Pare...

Neolithic burial practice in the Levant Plastered human skullsPlastered skull, Tell es-Sultan, Jericho, from approximately 9000 years ago (British Museum)MaterialPlaster and boneCreated8000–6000 BCPresent locationPalestine Plastered human skulls are human skulls covered in layers of plaster and typically found in the ancient Levant, most notably around the modern Palestinian city of Jericho, between 8,000 and 6,000 BC (approximately 9000 years ago),[1][2] in the Pre-Pottery ...

 

Tennis at the 2011 Pacific GamesDate29 August-8 September← 20072015 → Tennis at the 2011 Pacific Games in Nouméa, New Caledonia was held on August 29–September 8, 2011. Medal summary Medal table RankNationGoldSilverBronzeTotal1 New Caledonia52182 Samoa11463 Papua New Guinea11134 Vanuatu03035 Solomon Islands0011Totals (5 entries)77721 Medals events Event Gold Silver Bronze Men's Singles[1][2] Nickolas N’Godrela New ...