רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים. אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים. אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים. אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים. אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
חוג המספרים השלמים הוא מערכת מספרים הכוללת את המספרים השלמים, חיוביים ושליליים, לרבות אפס (ואותם בלבד), יחד עם פעולות החיבור והכפל. את חוג המספרים השלמים מקובל היום לסמן באות , שהיא האות הראשונה במילה הגרמנית "Zahlen" (מספרים).
אוסף זה של מספרים הוא הדוגמה הבסיסית לחוגקומוטטיבי. בפיתוח האקסיומטי של מערכות מספרים, חוג המספרים השלמים מוגדר מתוך מערכת פאנו של המספרים הטבעיים. זהו אחד המבנים הבסיסיים ביותר בתורת החוגים ובמתמטיקה בכלל. יחד עם תכונותיו והפעולות המוגדרות עליו, מהווה החוג אבן יסוד בתחומים רבים, כמו אלגברה, תורת המספרים ועוד. תכונות החוג מהוות בסיס להגדרות כלליות יותר בתורת החבורות והחוגים.
החבורה נוצרת על ידי 1 ו--1. כל האיברים בה מלבד 0 (איבר היחידה) הם מסדר אינסופי, וכל תת-החבורות שלה הן החבורות הציקליות האינסופיות .
תכונות כחוג
המספרים השלמים הם אחד החוגים הבסיסיים ביותר. מעבר לכך, במקרים רבים הם מהווים מוטיבציה להגדרות כלליות יותר, שמטרתן היא להכליל את התכונות של המספרים השלמים בתורת החוגים הכללית. להלן מספר תכונות מרכזיות של כחוג:
כאמור לעיל, פעולת הכפל שומרת על קומוטטיביות ממערכת המספרים הטבעיים, ועל כן החוג הוא קומוטטיבי.
חוג זה הוא תחום ראשי, כלומר כל האידיאלים בו הם ראשיים. אכן קל לוודא שכל קבוצה מהצורה היא אידיאל, וגם ההפך נכון - אם אידיאל שונה מהאידיאל האפס, אפשר לבחור את המחלק המשותף המקסימלי של איברי האידיאל, ולהראות כי הוא יוצר את האידיאל.
על חוג זה ניתן להגדיר נורמה בעזרת פונקציית הערך המוחלט. נורמה זו הופכת את המרחב לחוג אוקלידי, בגלל עקרון החלוקה עם שארית במספרים השלמים. זו דרך נוספת להסביר מדוע החוג הוא ראשי - כל חוג אוקלידי הוא ראשי.
לאחר הגדרת חוג השלמים, עלתה השאלה כיצד ניתן להרחיב אותו אבל "לא בהרבה", או במילים אחרות למצוא חוגים נוספים "בין" המספרים השלמים למספרים הרציונליים ואף למספרים הממשיים ולמספרים המרוכבים. אפשר להוסיף לחוג איברים ו"לסגור" את הקבוצה החדשה, כך שייווצר חוג מינימלי שיכיל את המספרים השלמים ואת האיברים החדשים.
פורמלית, לכל קבוצת מספרים מרוכבים , אפשר להגדיר את כחיתוך כל תת-החוגים של שדה המספרים המרוכבים המכילים את ואת 1. קבוצה זו מגדירה חוג (כחיתוך של חוגים), וזהו החוג הקטן ביותר שמכיל את ואת .
למשל, אם , אז ניתן להראות כי . בקבוצה זו ראשוניים ואי פריקים מקבלים משמעות שונה, שכן לא ראשוני אבל כן אי פריק.
^ יכול להיות כל שדה מספרים. השדה יהיה ההשלמה שלו במקוםסופי שלו, והשדה הסופי יהיה מנה של חוג השלמים באידיאל הראשוני המתאים. לדוגמה אפשר לקחת את ואז יהיה חוג השלמים של גאוס. אם רוצים ששני החיצים המקווקוים ייצגו העתקות אז צריך לבחור שדה שיש לו גם שיכונים ממשיים וגם מרוכבים, למשל .
^הסימבול יכול לסמן משתנה אחד או כל קבוצה סדורה היטב של משתנים. יש שיכון בין אובייקט המתאים לקבוצה של משתנים לבין אובייקט המתאים לקבוצה של משתנים המכילה את .