En , Maynard donne une autre preuve du théorème de Zhang Yitang[3], énonçant qu'il y a des écarts limités entre les nombres premiers. Il résout une conjecture ouverte depuis longtemps, en montrant que pour tout il y a une infinité d'intervalles de longueur délimitée contenant nombres premiers[4]. Ce travail peut être considéré comme un progrès sur la conjecture des -tuples de Hardy–Littlewood, car elle établit que « une proportion positive de -tuples recevables satisfait la conjecture de -tuples premiers pour chaque »[5]. L'approche de Maynard aboutit à la limite supérieure
ce qui améliore de manière significative les meilleures limites existantes apportées par le projet Polymath 8[6]. En d'autres termes, il montre qu'il existe une infinité de nombres premiers distants d'au plus 600. Par la suite, le projet Polymath 8b est créé[7], dont les efforts collaboratifs ont réduit la taille de l'écart à 252.
Le , un an après l'annonce de Zhang, selon le wiki du projet Polymath, N avait été réduit à 246. En outre, en supposant avérée la conjecture d'Elliott-Halberstam et sa forme généralisée, le projet Polymath établit que N peut être réduit à 12 et 6, respectivement.
En , Maynard a résolu[8], indépendamment de Ford, Green, Koniaguine et Tao[9], une vieille conjecture de Paul Erdős sur de grands écarts entre les nombres premiers, et il a reçu 10 000 $, le prix le plus élevé jamais offert par Erdős[10] (qui avait l'habitude d'offrir des prix, à partir de 25 $, pour des problèmes à résoudre[11]).
En 2016, il montre qu'il y a une infinité de nombres premiers n'ayant pas un chiffre donné (par exemple le 7) dans leur représentation décimale[12],[13],[14].
↑C'est un résultat assez fort, la proportion de nombres de n chiffres ayant cette propriété () tendant vers 0 lorsque n tend vers l'infini. Cependant, Maynard fait remarquer que la méthode utilisée est insuffisante pour démontrer le même résultat pour des nombres ayant deux chiffres exclus ; a fortiori, elle échoue complètement à résoudre la question pour les répunits.
↑Dimitris Koukoulopoulos et James Maynard, « On the Duffin-Schaeffer conjecture », Ann. Math. (2), vol. 192, no 1, , p. 251-307 (zbMATH1459.11154, arXiv1907.04593).