Le système de racines de est constitué des sommets d'un hexagone régulier centré à l'origine. Le groupe complet des symétries de ce système de racines est par conséquent le groupe diédral d'ordre 12. Le groupe de Weyl est engendré par les réflexions à travers les droites bissectant les paires de côtés opposés de l'hexagone ; c'est le groupe diédral d'ordre 6.
Enlever les hyperplans définis par les racines de découpe l'espace euclidien en un nombre fini de régions ouvertes, appelées les chambres de Weyl. Celles-ci sont permutées par l'action sur le groupe de Weyl, et un théorème établit que cette action est simplement transitive. En particulier, le nombre de chambres de Weyl est égal à l'ordre du groupe de Weyl.
Tout vecteur v différent de zéro divise l'espace euclidien en deux demi-espaces bordant l'hyperplan orthogonal à v, nommés et .
Si v appartient à une certaine chambre de Weyl, aucune racine ne se trouve dans , donc chaque racine se trouve dans ou , et si se trouve dans l'un d'eux, alors se trouve dans l'autre. Ainsi,
constitué d'exactement la moitié des racines de . Bien sûr, dépend de v, mais il ne change pas si v reste dans la même chambre de Weyl.
La base du système de racines qui respecte le choix de est l'ensemble des racines simples dans , i.e., les racines qui ne peuvent pas être écrites comme une somme de deux racines dans . Ainsi, les chambres de Weyl, l'ensemble et la base en déterminent un autre, et le groupe de Weyl agit simplement transitivement dans chaque cas. L'illustration suivante montre les six chambres de Weyl d'un système de racines , un choix de v, l'hyperplan (indiqué par une droite en pointillé) et les racines positives , , et . La base dans ce cas est (}.
Les groupes de Coxeter
Les groupes de Weyl sont des exemples des groupes de Coxeter. Ceci signifie qu'ils ont une sorte particulière de présentation dans laquelle chaque générateur est d'ordre deux, et les relations autres que sont de la forme . Les générateurs sont les réflexions données par les racines simples et est 2, 3, 4 ou 6 dépendant si les racines i et j font un angle de 90, 120, 135 ou 150 degrés, i.e., si dans le Diagramme de Dynkin, elles ne sont pas connectées, connectées avec une arête simple, connectées par une double arête ou connectées par une triple arête.
La longueur d'un élément du groupe de Weyl est la longueur du mot le plus court représentant cet élément en termes de ces générateurs standards.