Les facteurs de nécrose tumorale, ou TNF (de l'anglais : tumor necrosis factors), forment une superfamille de protéines dite superfamille des TNF, dont le membre type est le TNF α, également appelé cachectine, voire cachexine. Ce sont des protéines transmembranaires présentant un domainehomologue dit TNF. Le terme « facteur de nécrose tumorale » sans autre précision fait généralement référence au seul TNF α, importante cytokine impliquée dans l'inflammation systémique et dans la réaction de phase aiguë, qui sera développé dans cet article ; d'autres membres de la famille des TNF portent également d'autres noms, comme le TNF β, qui n'est autre que la lymphotoxine α.
En 1890, découverte du TNF-α par Dr William B. Coley qui lors de ses expériences a induit de la nécrose tumorale lorsqu'il a injecté la toxine qui porte aujourd'hui son nom. Bien que son expérience ait fonctionné afin de combattre les sarcomes qu'il souhaitait traiter, un état d'hyperinflammation systémique en résulta. Plus tard, cette molécule a été démontrée responsable de la lyse cellulaire lors d'expériences in vitro[10].
En 1985, Dr Beutleur Bruce, immunologiste de Chicago, a extrait les protéines TNF-α depuis le surnageant des macrophages traités par l'endotoxine (LPS) puis la purifia. Il l'appela la protéine "Cachectin" à cause de son habileté à induire la cachexie. Plus tard la molécule de TNF-α fut isolée depuis les patients traités par l'endotoxine. Cependant le facteur induit par les endotoxines a plus tard été controversé et n'est probablement pas la même chose que le TNF a[11].
Le nom de "facteur de nécrose" a été pour la première fois utilisé en 1962 pour la régression de l'activité tumorale (sarcome) induite dans le sérum de souris traitées avec le polysaccharide Serratia Marcescens. Cette activité fut démontrée ensuite par Carswell en 1975 comme le résultat du TNF[12].
Le TNFα a été isolé en 1975 par Carswell et al. sous forme d'un facteur soluble libéré par les cellules de l'hôte ayant provoqué la nécrose d'une tumeur transplantée, la « sarcome Meth A »[13]. Bien que le TNFα ne provoque pas la nécrose de certaines tumeurs, il peut stimuler la croissance d'autres. Dans ce sens, son nom est quelque peu abusif.
Le TNF α est produit sous forme d'une protéine transmembranaire initialement longue de 233 résidus d'acides aminés formant des homotrimères stables[16],[17]. La cytokine homotrimérique soluble TNFs est libérée à partir de cette forme membranaire par clivageprotéolytique sous l'action d'une métalloprotéinase, l'enzyme de conversion du TNF α, appelée TACE ou ADAM17(en)[18]. Le TNFs trimérique soluble de 51 kDa tend à se dissocier aux concentrations inférieures à la nanomole par litre, ce qui lui fait perdre en activité biologique. La forme sécrétée du TNF humain adopte une forme pyramidale pour une masse d'environ 17 kDa. Les formes membranaires et sécrétées sont biologiquement actives, mais les rôles respectifs de chacune d'entre elles demeurent débattus ; ces deux formes présentent néanmoins à la fois des fonctions distinctes et des fonctions communes[19].
Le TNF α fait partie d'un groupe de plusieurs cytokines impliquées dans l'inflammation, en phase de réaction aiguë et lors de l'inflammation chronique. C'est une glycoprotéine de 185 acides aminés, obtenue par clivage d'un précurseur de 212 acides aminés se trouvant à la surface de macrophages ou de fibroblastes. Certaines cellules sécrètent des isoformes plus ou moins longs. Le gène du TNFa est situé sur le chromosome 6 humain (en 6p21).
La structure du TNF α est constituée de deux feuillets βantiparallèles. Des ponts disulfure stabilisent la structure, mais ils ne sont pas nécessaires à l’activité biologique.
On dénombre deux formes de TNF α : une forme soluble et une forme liée à la membrane. Ces deux formes sont actives mais ont des affinités différentes pour les récepteurs membranaires au TNF (TNFR-1 et TNFR-2). Il existe également des récepteurs solubles, ou circulants, ils ont un rôle de leurre (decoy), entrant en compétition avec les récepteurs membranaires et réduisant ainsi l'activité biologique du TNF α.
Biologie
La fixation des TNF sur des récepteurs (TNFR 1 et 2) peut aboutir à au moins trois évènements :
La fixation sur le TFNR1 permet la formation d'un complexe avec le TRADD, le RIP1 et le TRAF2, le tout permettant l'activation du NF-κB[21].
Physiopathologie
Le TNFα est libéré par diverses cellules immunitaires, notamment les macrophages[22] tandis que le TNF β est libéré par les lymphocytes. Le TNF α est libéré également par l'endothélium et d'autres tissus généralement en réponse à une lésion, et/ou lors d'une infection. Sa libération est stimulée par plusieurs autres médiateurs, comme l'interleukine 1 ou l'endotoxinebactérienne. Il possède plusieurs actions sur divers organes et systèmes, généralement en coopération avec les interleukines 1 et 6 :
suppression de l'appétence, faim (d'où son nom historique de « cachectine », son action a été rattachée à la perte de poids sévère observée lors de processus pathologiques, cancéreux en particulier). Son rôle dans les vomissements est associé à une catastrophe sanitaire : la thalidomide, molécule anti-TNF mais aussi tératogène, a été utilisée contre les vomissements associés à la grossesse, entraînant une vague de nombreuses malformations chez les nouveau-nés, avant d'être interdite,
sur le foie : stimulation de la phase de réponse aiguë de l'inflammation, conduisant à une augmentation de CRP et d'autres médiateurs ;
il attire très efficacement les polynucléaires neutrophiles, et les aide à adhérer à la paroi des cellules endothéliales, d'où elles sortiront par diapédèse ;
sur les macrophages : stimulation de la phagocytose, production d'IL-1, d'oxydants et de lipides pro-inflammatoires, p.e la prostaglandine E2 (PGE2) ;
Une augmentation locale de la concentration en TNFα est une des causes des signes cardinaux de l'inflammation : Rubor (rougeur, érythème), Calor (chaleur, due à la vasodilatation), Tumor (tuméfaction, œdème), Dolor (douleur).
TNF-α : rôle local et effet systémique
Le recrutement et l'activation des macrophages et des lymphocytes par le TNF sur le site d'une inflammation locale contribue à contenir et à éliminer les agents pathogènes ayant pénétré un tissu. Cependant en cas d'infection systémique (sepsis), le TNF-α peut être sécrété de façon excessive à la suite de la présence massive d'agents infectieux dans les tissus et/ou le sang. L'action locale (par exemple vasodilatation de capillaires sanguins proches d'un lieu d'infection) se propage donc à l'ensemble de l'organisme. Cela entraîne un état de choc, avec coagulation intravasculaire disséminée, défaillance de plusieurs organes nobles, pouvant entraîner la mort[24].
Ces traitements sont immunosuppresseurs et peuvent augmenter le risque de contracter la tuberculose, ou la réactivation d'infections latentes.
Le TNF, ou ses effets, peuvent également être inhibés de façon plus modeste par certains composés naturels, dont la curcumine (présente dans la curcuma) et les catéchines (présentes dans le thé vert).
Golimumab : aussi connu sous le nom commercial Symponi
Notes et références
↑(en) M. J. Eck et S. R. Sprang, « The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. », Journal of Biological Chemistry, vol. 264, no 29, , p. 17595-17605 (PMID2551905, DOI10.2210/pdb1tnf/pdb, lire en ligne)
↑(en) Walter Swardfager, Krista Lanctôt, Lana Rothenburg, Amy Wong, Jaclyn Cappell et Nathan Herrmann, « A Meta-Analysis of Cytokines in Alzheimer's Disease », Biological Psychiatry, vol. 68, no 10, , p. 930-941 (PMID20692646, DOI10.1016/j.biopsych.2010.06.012, lire en ligne)
↑(en) Yekta Dowlati, Nathan Herrmann, Walter Swardfager, Helena Liu, Lauren Sham, Elyse K. Reim et Krista L. Lanctôt, « A Meta-Analysis of Cytokines in Major Depression », Biological Psychiatry, vol. 67, no 5, , p. 446-457 (PMID20015486, DOI10.1016/j.biopsych.2009.09.033, lire en ligne)
↑(en) Frank C. Victor et Alice B. Gottlieb, « TNF-alpha and Apoptosis: Implications for the Pathogenesis and Treatment of Psoriasis », Journal of Drugs in Dermatology, vol. 1, no 3, , p. 264-275 (PMID12851985)
↑(en) J. Brynskov, P. Foegh, G. Pedersen, C. Ellervik, T. Kirkegaard, A. Bingham et T. Saermark, « Tumour necrosis factor α converting enzyme (TACE) activity in the colonic mucosa of patients with inflammatory bowel disease », Gut, vol. 51, no 1, , p. 37-43 (PMID12077089, PMCID1773288, DOI10.1136/gut.51.1.37, lire en ligne)
↑(en) Antonina A. Mikocka-Walus, Deborah A. Turnbull, Nicole T. Moulding, Ian G. Wilson, Jane M. Andrews et Gerald J. Holtmann, « Controversies surrounding the comorbidity of depression and anxiety in inflammatory bowel disease patients: A literature review », Inflammatory Bowel Diseases, vol. 13, no 2, , p. 225-234 (PMID17206706, DOI10.1002/ibd.20062, lire en ligne)
↑(en) Kinga Bobińska, Elżbieta Gałecka, Janusz Szemraj, Piotr Gałecki et Monika Talarowska, « Is There a Link Between TNF Gene Expression and Cognitive Deficits in Depression? », Acta Biochimica Polonica, vol. 64, no 1, , p. 65-73 (PMID27991935, DOI10.18388/abp.2016_1276, lire en ligne)
↑(en) Bharat B. Aggarwal, Subash C. Gupta et Ji Hye Kim, « Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey », Blood, vol. 119, no 3, , p. 651–665 (ISSN0006-4971 et 1528-0020, DOI10.1182/blood-2011-04-325225, lire en ligne, consulté le )
↑(en) B. Beutler, D. Greenwald, J. D. Hulmes et M. Chang, « Identity of tumour necrosis factor and the macrophage-secreted factor cachectin », Nature, vol. 316, no 6028, , p. 552–554 (ISSN0028-0836 et 1476-4687, DOI10.1038/316552a0, lire en ligne, consulté le )
↑(en) W. Edward O'Malley, Betty Achinstein et Murray J. Shear, « Action of Bacterial Polysaccharide on Tumors. II. Damage of Sarcoma 37 by Serum of Mice Treated with Serratia Marcescens Polysaccharide, and Induced Tolerance », Nutrition Reviews, vol. 46, no 11, , p. 389–391 (DOI10.1111/j.1753-4887.1988.tb05376.x, lire en ligne, consulté le )
↑(en) Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B, « An endotoxin-induced serum factor that causes necrosis of tumors », PNAS, vol. 72, , p. 3666-70 (PMID1103152, lire en ligne)
↑(en) Glenn E. Nedwin, Susan L. Naylor, Alan Y. Sakaguchi, Douglas Smith, Julie Jarrett-Nedwin, Diane Pennica, David V. Goeddel et Patrick W. Gray, « Human Lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization », Nucleic Acids Research, vol. 13, no 17, , p. 6361-6373 (PMID2995927, DOI10.1093/nar/13.17.6361, Bibcode321958, lire en ligne)
↑(en) M. Kriegler, C. Perez, K. DeFay, I. Albert et S. D. Lu, « A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: Ramifications for the complex physiology of TNF », Cell, vol. 53, no 1, , p. 45-53 (PMID3349526, DOI10.1016/0092-8674(88)90486-2, lire en ligne)
↑(en) Ping Tang, Mien-Chie Hung et Jim Klostergaard, « Human pro-Tumor Necrosis Factor Is a Homotrimer », Biochemistry, vol. 35, no 25, , p. 8216-8225 (PMID8679576, DOI10.1021/bi952182t, lire en ligne)
↑(en) Roy A. Black, Charles T. Rauch, Carl J. Kozlosky, Jacques J. Peschon, Jennifer L. Slack, Martin F. Wolfson, Beverly J. Castner, Kim L. Stocking, Pranitha Reddy, Subhashini Srinivasan, Nicole Nelson, Norman Boiani, Kenneth A. Schooley, Mary Gerhart, Raymond Davis, Jeffrey N. Fitzner, Richard S. Johnson, Raymond J. Paxton, Carl J. March et Douglas Pat Cerretti, « A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells », Nature, vol. 385, no 6618, , p. 729-733 (PMID9034190, DOI10.1038/385729a0, Bibcode1997Natur.385..729B, lire en ligne)
↑(en) Sreerupa Challa et Francis Ka-Ming Chan, « Going up in Flames: Necrotic Cell Injury and Inflammatory Diseases », Cell Mol Life Sci, vol. 67, , p. 3241–53 (PMCIDPMC3051829, lire en ligne)
↑(en) Hanna Chroboczek Kelker, Joel D. Oppenheim, Donna Stone‐Wolff et Dorothy Henriksen‐DeStefano, « Characterization of human tumor necrosis factor produced by peripheral blood monocytes and its separation from lymphotoxin », International Journal of Cancer, vol. 36, no 1, , p. 69–73 (ISSN0020-7136 et 1097-0215, DOI10.1002/ijc.2910360112, lire en ligne, consulté le )
↑K. Kobayashi, N. Takahashi, E. Jimi et N. Udagawa, « Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction », The Journal of Experimental Medicine, vol. 191, no 2, , p. 275–286 (ISSN0022-1007, PMID10637272, PMCIDPMC2195746, lire en ligne)
↑(en) D. Aderka, J.M. Le et J. Vilcek, « IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice », The Journal of Immunology, vol. 143, no 11, , p. 3517-23 (résumé)