Les premières LED commercialisées dès les années 1960 ont produit de la lumière infrarouge, rouge, puis verte et jaune[1],[2]. Leur usage commercial restait limité à des applications de télécommande et d'indications lumineuses. L'arrivée de la LED bleue puis blanche, associée aux progrès techniques et d'assemblage, a permis aux lampes d'émettre dans une bande de longueurs d'onde plus large, correspondant au spectre visible, et même au-delà[3]. De nombreux appareils sont aujourd'hui munis de LED composites (trois LED réunies en un composant : rouge, vert et bleu) permettant d'afficher de très nombreuses couleurs.
En raison de nombreux avantages, les lampes LED remplacent d'autres types de lampes[4]. Elles sont aussi utilisées dans la construction des écrans : pour le rétroéclairage des écrans à cristaux liquides ou comme source d'illumination principale dans les écrans à OLED, ces dernières étant des LED où le semi-conducteur est un composé organique.
Histoire
La première émission de lumière par un semi-conducteur date de 1907 et est découverte par Henry Round, ingénieur chez Marconi. En 1927, le russe Oleg Lossev dépose le premier brevet de ce qui sera appelé plus tard une diode électroluminescente, mais les applications peinent à émerger, le carbure de silicium alors utilisé comme semi-conducteur ayant de piètres propriétés électroluminescentes.
La découverte de l'émission infrarouge à basse température de l'arséniure de gallium et d'autres semi-conducteurs III-V par Rubin Braunstein en 1955 à la RCA à Princeton permet d'envisager de prometteurs développements[5]. Nick Holonyak Jr. et S. Bevacqua créent la première LED rouge en 1962. Durant quelques années, les chercheurs se limitent à quelques couleurs telles que le rouge (1962), le jaune, le vert et plus tard le bleu (1972)[2],[6].
Dans les années 1990, les recherches, entre autres, de Shuji Nakamura et Takashi Mukai de Nichia, dans la technologie des semi-conducteurs InGaN permettent la création de LED bleues de forte luminosité, ensuite adaptées en LED blanches, par adjonction d'un luminophore jaune[7]. Cette avancée permet de nouvelles applications majeures telles que l'éclairage et le rétroéclairage des écrans de téléviseurs et des écrans à cristaux liquides. Le , Shuji Nakamura, Isamu Akasaki et Hiroshi Amano reçoivent le prix Nobel de physique pour leurs travaux sur les LED bleues[8].
Essor des LED
En 2007, Audi et Lexus bénéficient de dérogations de la Commission européenne pour commercialiser des modèles munis de feux avant à LED. En 2009, la Ferrari 458 Italia innove elle aussi avec des phares à LED. En 2020, la majorité des automobiles avec un niveau d'équipement élevé bénéficient de feux de route à LED désormais bien plus performants que les éclairages à lampe à incandescence halogène.
Plusieurs villes remplacent leur éclairage public par des LED dans le but de diminuer leur facture d'électricité et la pollution lumineuse du ciel (éclairage dirigé vers le bas). Le recours aux LED est aussi courant dans les feux tricolores. L'exemple de Grenoble est le plus souvent cité : la ville a réalisé son retour sur investissement en trois ans seulement. En effet, les LED permettent des économies d'énergie, mais ce sont surtout les coûts de maintenance qui baissent, du fait de leur robustesse.
En 2010, la Régie autonome des transports parisiens (RATP) expérimente l'éclairage des espaces du métro parisien, notamment à la station Censier-Daubenton première station de métro entièrement éclairée par cette technologie. En 2012 estimant le produit mature la RATP décide de modifier la totalité de son éclairage vers la technologie LED. ce sont plus de 250 000 luminaires qui seront modifiés, faisant ainsi du métro parisien le premier réseau de transport en commun d'envergure à adopter le « tout LED »[9]. Le remplacement des éclairages est finalisé en 2016[10].
Économie
Le développement de la technologie des LED suit une loi analogue à la loi de Moore, appelée loi de Haitz(en), du nom de Roland Haitz d'Agilent Technologies, et qui prévoit que les performances des LED doublent tous les trois ans, pour des prix divisés par dix tous les dix ans[11].
L'intérêt des lampes à LED en matière de consommation électrique, de durée de vie et de sécurité électrique s'est rapidement confirmé pour l'automobile (dans l'habitacle et pour les phares et clignotants, où les LED se montrent plus performantes que les sources xénon ou halogène), l'éclairage urbain, l'éclairage d'infrastructures, les usages dans la marine et l'aéronautique. Cet intérêt a, au début des années 2000, dopé le marché, qui a dépassé en 2010 le seuil des dix milliards de dollars américains (USD), soutenu par une croissance annuelle globale de 13,6 % de 2001 à 2012, et devrait atteindre 14,8 milliards USD avant la fin 2015[12]. Dans ce marché, la part de l'éclairage augmente régulièrement de 2008 à 2014 et devrait se stabiliser en 2018, alors que la part du rétro-éclairage devrait décroître dès 2014 en raison d'évolutions techniques[12].
La part destinée à l'automobile semble dans les années 2010-2015 stable (environ 10 % du marché global) et pourrait le rester jusqu'à 2020[12]. Les LED ont d'abord équipé des véhicules de luxe (Audi, Mercedes) puis de moyenne gamme (Seat Léon, Volkswagen Polo en 2014).
La recombinaison d'un électron et d'un trou d'électron dans un semi-conducteur conduit à l'émission d'un photon. En effet, la transition d'un électron entre la bande de conduction et la bande de valence peut se faire avec la conservation du vecteur d'onde. Elle est alors radiative (émissive) c'est-à-dire accompagnée de l'émission d'un photon. Dans une transition émissive, l'énergie du photon créé est donnée par la différence des niveaux d'énergie avant (Ei) et après (Ef) la transition :
(eV)
Une diode électroluminescente est une jonction P-N qui doit être polarisée en sens direct lorsqu'on veut émettre de la lumière. Le potentiel imposé aux bornes doit être supérieur à celui imposé par la jonction P-N. La plupart des recombinaisons sont radiatives. La face émettrice de la LED est la zone P car c'est la plus radiative[13].
Gros-plan d'une diode électroluminescente rouge-vert-bleu à 4 pôles.
Fonctionnement d'une LED.
Techniques de fabrication
La longueur d'onde du rayonnement émis dépend de la largeur de la « bande interdite » et donc du matériau utilisé. Toutes les valeurs du spectre lumineux peuvent être atteintes avec les matériaux actuels. L'infrarouge est obtenu grâce à l'arséniure de gallium (GaAs) dopé au silicium (Si) ou au zinc (Zn). Les fabricants proposent de nombreux types de diodes aux propriétés différentes. Les diodes à l'arséniure de gallium sont les plus économiques et les plus utilisées. Les diodes à l'arséniure de gallium-aluminium (AlGaAs) offrent une plus grande puissance de sortie mais nécessitent une tension directe plus élevée et ont une longueur d'onde plus courte (< 950 nm, ce qui correspond au maximum de sensibilité des détecteurs au silicium) ; elles présentent une bonne linéarité jusqu'à 1,5 A. Enfin, les diodes à double hétérojonction (DH) AlGaAs offrent les avantages des deux techniques précédentes (faible tension directe) avec des temps de commutation très courts (durée nécessaire pour qu'un courant croisse de 10 % à 90 % de sa valeur finale ou pour décroître de 90 % à 10 %), permettant des débits de données très élevés dans les transmissions de données numériques par fibres optiques. Les temps de commutation dépendent de la capacité de la jonction dans la diode.
Efficacité lumineuse
L'efficacité lumineuse varie selon le type de diodes, de 20 à 100 lm/W, et atteint en laboratoire 200 lm/W[14]. Une grande disparité de performances existe selon la couleur (température de couleur pour le blanc), la puissance ou encore la marque. Les diodes bleues n'excèdent pas 30 lm/W alors que les vertes ont une efficacité lumineuse atteignant 100 lm/W[15].
La limite théorique d'une source qui transformerait intégralement toute l'énergie électrique en lumière visible est de 683 lm/W[16], mais il faudrait qu'elle possède un spectre monochromatique de longueur d'onde 555 nm. L'efficacité lumineuse théorique d'une LED blanche est de l'ordre de 250 lm/W[17]. Ce chiffre est inférieur à 683 lm/W du fait que le maximum de sensibilité de l'œil se situe vers 555 nm.
L'efficacité lumineuse des LED blanches de dernière génération est supérieure à celle des lampes à incandescence mais aussi à celle des lampes fluocompactes ou encore de certains modèles de lampes à décharge. Le spectre de la lumière émise est presque intégralement contenu dans le domaine du visible (les longueurs d'onde sont comprises entre 400 nm et 700 nm). Contrairement aux lampes à incandescence et aux lampes à décharge, les diodes électroluminescentes n'émettent quasiment pas d'infrarouge, sauf celles fabriquées spécifiquement dans ce but.
L'efficacité lumineuse dépend de la conception de la LED. Pour sortir du dispositif (semi-conducteur puis enveloppe externe en époxy), les photons doivent traverser (sans être absorbés) le semi-conducteur, de la jonction jusqu'à la surface, puis traverser la surface du semi-conducteur sans subir de réflexion et, notamment, ne pas subir la réflexion totale interne qui représente la grosse majorité des cas. Une fois arrivé dans l'enveloppe externe en résine époxy (quelquefois teintée pour des raisons pratiques et non pour des raisons optiques), la lumière traverse les interfaces vers l'air à incidence proche de la normale ainsi que le permet la forme de dôme avec un diamètre bien plus grand que la puce (3 à 5 mm au lieu de 300 µm). Dans les diodes électroluminescentes de dernière génération, notamment pour l'éclairage, ce dôme plastique fait l'objet d'une attention particulière car les puces sont plutôt millimétriques dans ce cas et le diagramme d'émission doit être de bonne qualité. À l'inverse, pour des gadgets, on trouve des LED quasiment sans dômes.
Effet Auger
Aux fortes intensités, l'efficacité lumineuse des LED chute au cours de leur vie. Il a été suspecté en 2007-2008[18],[19], mieux compris en 2010-2011[20],[21] puis confirmé début 2013 que cette diminution est attribuable à un « effet Auger » qui dissipe une partie de l'énergie sous forme de chaleur[22],[23]. Des projets de recherche visent à limiter ou contrôler cet effet[24].
Caractéristiques techniques
Forme
Ce composant peut être encapsulé dans divers boîtiers destinés à canaliser le flux de lumière émis de façon précise : cylindrique à bout arrondi en 3, 5, 8 et 10 mm de diamètre, cylindrique à bout plat, ou de forme plate (LED SMD[25]), rectangulaire, sur support coudé, en technologie traversante ou à monter en surface (composant monté en surface, CMS).
Les LED de puissance ont des formes plus homogènes : la Luxeon 1 W ci-contre est assez représentative. Ces types de LED sont également disponibles en version « multicœur », « multipuces », ou « multichips » en anglais, dont la partie émissive est composée de plusieurs puces semi-conductrices.
L'enveloppe transparente, ou « capot », est généralement en résine époxy, parfois colorée ou recouverte de colorant.
L'intensité lumineuse des diodes électroluminescentes basse puissance est assez faible, mais suffisante pour la signalisation sur tableau ou appareils, voire en montage de multiples unités dans les feux de circulation (feux tricolores, passages piétons). Les bleues sont également suffisamment puissantes pour signaliser les bords de route, la nuit, aux abords des villes.
Les LED de puissance sont aussi utilisées dans la signalisation maritime comme sur les bouées permanentes. Deux de ces diodes sont situées l'une par-dessus l’autre et suffisent à un éclairement important et visible par les bateaux de nuit.
Des LED de forte puissance ont vu le jour au début des années 2000. Dans la première décennie du XXIe siècle, des rendements lumineux d'environ 130 lumens/watt sont ainsi atteints. Par comparaison, les ampoules à filament de tungstène de 60 W atteignent un rendement lumineux d'environ 15 lumens/watt et le rendement lumineux maximum théorique étant de 683 lumen par watt (découlant de la définition de la candela et du lumen).
Les LED sont, dès 2014, suffisamment puissantes pour servir d'éclairage principal dans le secteur de l'automobile. Employées d'abord pour les feux de position, stop, clignotants ou de recul, celles-ci remplaceront certainement, à terme, toutes les lampes à incandescence.
Couleurs
La couleur de la lumière d'une diode électroluminescente peut être produite de différentes manières[26],[27] :
couleur due à la nature du semi-conducteur (capot transparent) : la longueur d'onde émise correspond directement au gap du matériau utilisé ;
coloration modifiée par le capot de la diode (émission bleue ou UV + revêtement à base de luminophores) ;
coloration par plusieurs émissions de longueur d'onde différentes (diodes électroluminescentes polychromatiques). Elles permettent notamment de proposer une vaste gamme de couleurs[28].
Voici quelques colorations en fonction du semi-conducteur utilisé :
On peut remarquer dans le tableau ci-dessus qu'en multipliant la longueur d'onde λ par la tension de seuil de la diode, on obtient chaque fois une valeur proche de 1240. Cette valeur est à rapprocher de l'énergie d'un photon exprimée en électronvolt.
En exprimant la longueur d'onde en nanomètre (nm) et la tension de seuil en volt, on a :
proche de
Pour le blanc, on ne parle pas de longueur d'onde mais de température de couleur proximale. Celle des diodes électroluminescentes est assez variable en fonction du modèle.
Comme toutes les diodes, les diodes électroluminescentes sont polarisées, elles présentent un « sens passant » et un « sens bloquant ». Dans le sens bloquant, la tension d'avalanche est plus faible que sur une diode dite de redressement. Dans le sens passant, on trouve un effet de seuil et un courant nominal à ne pas dépasser : on raccorde le pôle « - » à la cathode « - » et donc le pôle « + » à l'anode « + »[29]. Les diodes à dôme basse puissance ont généralement trois détrompeurs : la cathode est plus courte, l'électrode à l'intérieur du dôme est plus grosse et le bord extérieur du dôme est plat. Inversement, l'anode est plus longue, l'électrode à l'intérieur du dôme est plus petite et le bord extérieur du dôme est arrondi (cf. illustration).
Gros-plan d'une diode électroluminescente.
L'anode et la cathode d'une LED. Les signes indiquent la polarisation (courant conventionnel) lorsque la diode est utilisée en sens direct.
Sur tous les modèles et pour toutes les puissances, il est indispensable de ne pas dépasser l'intensité admissible (typiquement : 10 à 30 mA pour une LED de faible puissance et de l'ordre de 350 à 1 000 mA pour une LED de forte puissance). On intercale pour cette raison un circuit limiteur de courant, souvent une résistance en série pour les faibles puissances. Les données du fabricant permettent de calculer la résistance en fonction de cette intensité désirée I, de Valim la tension d'alimentation, de VLED la tension directe de la LED et du nombre n de LED en série (loi d'Ohm : R = (Valim - n × VLED) / I). On peut regrouper plusieurs diodes dans un schéma série ou série-parallèle : les tensions directes s'additionnant en mode série ; ce qui permet de diminuer la résistance en série et donc d'augmenter le rendement du dispositif. Le courant maximal admissible est multiplié par le nombre de diodes en parallèle.
Une méthode peu dispendieuse en énergie et adaptée aux plus forte puissances consiste à utiliser un circuit de régulation du courant construit sur des principes analogues à ceux mis en œuvre dans les alimentations électriques à découpage. Cette méthode est employée pour les lampes LED d'éclairage, le circuit est intégré dans les culots des lampes.
Pour conserver leurs caractéristiques colorimétriques (température de couleur proximale, IRC…), il est primordial d'apporter un soin particulier à l'alimentation électrique des LED[30].
Petite taille : on peut par exemple construire des LED de la taille d'un pixel (ce qui ouvre la possibilité d'utiliser des diodes pour construire des écrans de haute résolution).
Taille beaucoup plus réduite que les lampes classiques, ce qui offre la possibilité de réaliser des sources de lumière très ponctuelles, de faible à très faible consommation électrique (quelques dizaines de milliwatts) et avec un bon rendement. En assemblant plusieurs LED, on peut réaliser des éclairages avec des formes novatrices.
Durée de vie (20 000 à 50 000 heures environ) beaucoup plus longue qu'une lampe à incandescence (1 000 heures) ou qu'une lampe halogène (2 000 heures), mais du même ordre de grandeur que les lampes fluorescentes (5 000 à 70 000 heures). Les lampes puissantes voient leur durée de vie limitée, mais pouvant néanmoins atteindre 10 000, voire 15 000 heures selon le type d'utilisation qui en est fait[31][source insuffisante],[32].
Fonctionnement en très basse tension (TBT), gage de sécurité et de facilité de transport. Pour les campeurs, des lampes de poche à LED peuvent être actionnées par une simple dynamo à main (« lampe à manivelle ») de mouvement lent.
En matière de sécurité, par rapport aux systèmes lumineux classiques, l'inertie lumineuse est quasiment nulle. Elles s'allument et s'éteignent en un temps très court, ce qui permet l'utilisation en transmission de signaux à courte distance (optocoupleurs) ou longue (fibres optiques). Les LED atteignent immédiatement leur intensité lumineuse nominale.
Les LED classiques de 5 mm ne chauffent presque pas. Pour les montages de puissance supérieure à 1 W, il faut prévoir une dissipation de la chaleur, faute de quoi la diode sera fortement endommagée, voire détruite du fait de l'échauffement. En effet, une diode électroluminescente convertit environ 20 % de l'énergie électrique en lumière, le reste étant dégagé sous forme de chaleur.
Les LED RVB (rouge-vert-bleu) permettent des mises en valeur colorées avec des possibilités de variations sans limite.
Inconvénients
L'indice de rendu de couleur (IRC) s'est amélioré depuis 2010. Les LED dites blanches sont généralement des LED bleues ou émettant dans l'UV, dont une partie de la lumière produite est transformée par fluorescence en lumière jaune au moyen d'un luminophore qui est souvent un grenat d'yttrium et d'aluminium dopé par des ions de terres rares tels que le cérium trivalent Ce3+ (d'autres matériaux luminescents pouvant être utilisés pour produire un blanc plus chaud)[33],[34] : le spectre est moins régulier que celui d'une lampe halogène. Plus rarement, le blanc est obtenu au moyen de trois diodes de couleurs différentes.
Les LED, comme tout composant électronique, ont des limites maximales de température de fonctionnement, de même que certains composants passifs constitutifs de leur circuit d'alimentation (comme les condensateurs chimiques qui s'échauffent en fonction du courant efficace), ce qui conditionne en partie la durée de vie des lampes à LED. La dissipation thermique des composants des ampoules à LED est un facteur limitant leur montée en puissance, notamment en assemblages multipuces[35]. Les recherches portent sur des moyens de limiter la température et de mieux dissiper la chaleur des LED de puissance (par exemple pour des lampadaires ou phares automobiles)[35],[36].
Selon le constructeur Philips, l'efficacité lumineuse de certaines LED baisse rapidement (comme pour la plupart des technologies lumineuses) pour ne plus produire en fin de vie que 20 % de la quantité de lumière initiale, mais pour les LED les plus performantes du marché, la quantité de lumière produite en fin de vie serait encore d'au moins 70 %[note 1]. La température accélère la baisse de l'efficacité lumineuse. Philips précise que la couleur peut varier sur certaines LED blanches et tirer sur le vert en vieillissant[37].
Il existe plusieurs manières de classer les diodes semi-électroluminescentes :
Classement selon la puissance
La première est un classement par puissance :
les diodes électroluminescentes de faible puissance < 1 W. Ce sont les plus connues du grand public car elles sont présentes dans notre quotidien depuis des années. Ce sont elles qui jouent le rôle de voyant lumineux sur les appareils électroménagers par exemple ;
les LED de forte puissance > 2 W. Elles sont en plein essor dans les années 2010 et leurs applications sont de plus en plus connues du grand public : flash de téléphones portables, éclairage domestique, éclairage de spectacle, lampe de poche ou frontales… Le principe de fonctionnement est identique. Certaines différences significatives existent entre les deux familles, consacrées chacune à un champ d'application spécifique.
Classement selon le spectre d'émission
Une autre manière de les classer est de considérer la répartition de l'énergie dans la gamme de longueur d'onde couvrant le visible (longueurs d'onde de l'ordre de 380 à 780 nm) ou l'invisible (principalement l'infrarouge). La raison de la distinction réside dans le fait que certaines diodes peuvent servir à éclairer :
les chromatiques : l'énergie est concentrée sur une plage étroite de longueur d'onde (20 à 40 nm). Ces sources ont un spectre quasiment monochromatique ;
les blanches : l'énergie est répartie dans le visible sur toute la gamme de longueurs d'onde (380 à 780 nm environ) ;
les infrarouges : l'énergie est émise hors du spectre de la lumière visible (au-delà de 700 nm de longueur d'onde). Elles sont utilisées pour transmettre des signaux de télécommandes ou pour de la télémesure exploités par exemple dans la détection de position des consoles de jeux telles que la Wii, ou servir d'éclairage pour les caméras infrarouge, etc.
Autres classements
D'autres classements sont possibles, par exemple selon le caractère monopuce ou multipuce, la durée de vie, la consommation d'énergie ou encore la robustesse en cas de sollicitations sous contraintes (comme pour certains matériels industriels, militaires, spatiaux…).
Éclairage invisible pour caméras de surveillance (dans l'infrarouge).
Luminaires et éclairage public (plus récemment), avec par exemple Los Angeles, première métropole qui a remplacé ses 140 000 ampoules d'éclairage urbain par des diodes électroluminescentes de 2009 à 2014, ce qui devrait réduire de l'équivalent de 40 500 tonnes de carbone les émissions annuelles de cette ville (soit l'équivalent des émissions de 6 700 voitures)[41]. Après le remboursement de l'investissement, la ville pense aussi diminuer ses charges d'éclairage en économisant annuellement 10 millions de dollars[41].
Affichage
Signalisation d'état d'appareils divers (lampes témoins en face avant ou sur le circuit, tableaux de bord de voitures, équipements de sécurité).
Affichage alphabétique ou numérique d'appareils de mesure, de calculatrices, d'horloges.
Affichages de niveaux de mesures (niveaux de cuves, VU-mètres).
Affichage statique ou dynamique de messages (journaux lumineux).
L'amélioration du rendement des LED permet de les employer en remplacement de lampes à incandescence ou fluorescence, à condition de les monter en nombre suffisant :
LED noyées dans le bitume pour la matérialisation des pistes la nuit ou par temps de brouillard ;
En 2006, le groupe américain Graffiti Research Lab a lancé le mouvement Led throwies (« lancer de LED ») qui consiste à égayer les lieux publics en ajoutant de la couleur sur des surfaces magnétiques. Pour ceci, on combine une LED, une pile au lithium et un aimant, et on lance l'ensemble sur une surface magnétique[42].
Les LED sont utilisées pour réaliser des écrans vidéo de très grande taille (plateaux TV salon dans des grands halls, stade…).
Le rétroéclairage de l'écran par des diodes électroluminescentes permet de fabriquer des écrans plus fins, plus lumineux, ayant une étendue colorimétrique plus importante et plus économes que son prédécesseur ACL à rétroéclairage par tube fluorescent (technologie CCFL)[43].
La méthode la plus rentable économiquement pour fabriquer des LED consiste à combiner une diode émettant une longueur d'onde courte (dans le bleu) avec un luminophore jaune pour produire de la lumière blanche ; La lumière bleue est particulièrement connue pour perturber l'horloge circadienne[45],[46].
Le bilan environnemental des diodes électroluminescentes est discuté, car leur développement considérable pourrait augmenter les tensions sur le marché de certaines ressources non renouvelables (terres rares ou métaux précieux) et parce que la conversion des éclairages urbains aux LED semble souvent susciter une augmentation de l'illumination globale du ciel nocturne, et donc de la pollution lumineuse, visible depuis l'espace[50].
Des préoccupations concernent également l'impact sanitaire de lampes mal utilisées. Ainsi, selon une étude publiée en 2014 dans la revue Ecological Applications, alors que l'éclairage nocturne municipal et industriel a déjà changé la répartition des différentes espèces d'invertébrés autour des sources lumineuses[51] et semble contribuer à la régression ou la disparition de nombreuses espèces de papillons[52], l'éclairage public tend à utiliser à grande échelle les diodes électroluminescentes[44]. La question de l'impact des spectres lumineux des lampes prend donc de l'importance[53]. Ces spectres lumineux ont récemment beaucoup changé, et ils changeront encore avec le développement des LED[54]. Or, il apparaît que le spectre lumineux émis par les LED mises sur le marché dans les années 2000-2014 attire les papillons de nuit et certains autres insectes plus que la lumière jaune des ampoules à vapeur de sodium, en raison d'une sensibilité élevée de ces invertébrés nocturnes aux parts vert-bleue et UV du spectre. Des pièges lumineux à insectes volants équipés de LED capturent 48 % plus d'insectes que les mêmes pièges utilisant des lampes à vapeur de sodium, avec un effet également lié à la température de l'air (les invertébrés sont des animaux à sang froid, naturellement plus actifs quand la température s'élève). Lors de cette étude, plus de 20 000 insectes ont été capturés et identifiés : les espèces les plus fréquemment piégées étaient des papillons et des mouches[44].
Ces lampes sont froides et ne brûlent pas les insectes comme pouvaient le faire des lampes halogènes, mais le caractère très attractif des LED pour de nombreux invertébrés peut leur être fatal ; leur vol est perturbé et, dans la zone d'attraction, ils sont mis en situation de « piège écologique », car largement surexposés à des prédateurs de type araignées et chauve-souris, avec de possibles effets écologiques plus globaux si ces lampes étaient utilisées à grande échelle (perturbation des réseaux trophiques et possible renforcement des infestations de certaines cultures ou sylvicultures par des « ravageurs phytosanitaires » attirés par ces lampes, tels que le Bombyx disparate, qui est source de dégâts importants depuis qu'il a été introduit aux États-Unis et qui se montre très attiré par la lumière[55] (les auteurs pointent les ports où un éclairage LED pourrait directement attirer des ravageurs ou des espèces exotiques envahissantes accidentellement apportées par des bateaux[44]). Ces espèces anormalement favorisées pourraient à leur tour mettre en péril des espèces natives rares ou menacées[56].
L'étude de 2014 n'a pas pu conclure que manipuler la température de la couleur des LED diminuait leur impact, mais les auteurs estiment qu'utiliser des filtres ou une combinaison de LED rouges, vertes, et bleues pourrait peut-être diminuer cette attraction fatale, au prix d'une consommation électrique et d'énergie grise[44] ou de terres rares accrue. Ils concluent qu'il existe un besoin urgent de recherche collaborative entre écologues et ingénieurs de la lumière pour minimiser les conséquences potentiellement négatives des développements futurs de la technologie LED[44]. En amont, l'écoconception des LED pourrait faciliter le recyclage des lampes usagées et, en aval, le ré-usage de LED d'objets désuets ou en fin de vie. De même, des systèmes intelligents d'asservissement de l'éclairage aux besoins réels sont possibles : lampes équipées de filtres limitant les émissions dans le bleu-vert et le proche-UV, mieux bafflées, c'est-à-dire produisant moins de halo et moins éblouissantes, ne s'allumant qu'à l'intensité nécessaire et uniquement quand on en a besoin, via un processus d'éclairage intelligent comportant la détection de présence et de luminosité ambiante, si possible intégré dans un smart grid ou un système écodomotique plus global. En 2014, quatre villes, Bordeaux, Riga en Lettonie, Piaseczno en Pologne et Aveiro au Portugal testent ce type de solution dans le cadre du programme européen « LITES »[57] (à l'installation, ces systèmes sont 60 % plus chers, mais ce surcoût doit être rapidement récupéré par les économies d'électricité et l'amélioration de la qualité de l'environnement nocturne).
↑ a et bC. Noé, Photobiomodulation en dermatologie : Comprendre et utiliser les LED, John Libbey Eurotext - Doin, coll. « Lasers et technologies apparentées », , 182 p..
↑B. Chambion, Étude de la fiabilité de modules à base de LEDs blanches pour applications automobile (thèse de doctorat), 253 p. (lire en ligne [PDF]), chap. I (« État de l'art des LED blanches de puissance pour l'éclairage automobile »), p. 16.
↑Gardner, N. F., Müller, G. O., Shen, Y. C., Chen, G., Watanabe, S., Götz, W., & Krames, M. R. (2007). Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A∕ cm2. Applied physics letters, 91(24), 243506 (résumé).
↑Li, X., Liu, H., Ni, X., Özgür, Ü., & Morkoç, H. (2010). Effect of carrier spillover and Auger recombination on the efficiency droop in InGaN-based blue LED. Superlattices and Microstructures, 47(1), 118-122 (résumé).
↑Nicolas Pousset, Caractérisation du rendu des couleurs des LED (thèse de doctorat), (lire en ligne [archive du ]), p. 50-52.
↑« Nous savons aujourd’hui produire des LED de toutes les couleurs de l’arc-en-ciel et même d’un très grand nombre de couleurs qui ne sont « pas » présentes dans l’arc-en-ciel ». Des couleurs comme le marron ne sont en effet pas présentes dans l'arc-en-ciel, et produites par panachages de longueurs d'onde (LED polychromatiques).
↑Jean-Jacques ROUSSEAU Professeur de physique à l'UFR Sciences de l'Université du Maine, « Caractéristiques des LED », (consulté le )
↑Nicolas Grandjean, « Les LED blanches », Pour la science, no 421, , p. 32-38.
↑N. Pradal, Synthèses, mise en forme et caractérisations de luminophores nanostructurés pour une nouvelle génération de dispositifs d'éclairage sans mercure (thèse de doctorat), université Blaise Pascal-Clermont-Ferrand II, 2012.
↑ a et bR. Ait Lhadj, A. Khamlichi et F. Mata Cabrera, Optimisation de la conception d'un dissipateur thermique pour luminaire à diode électroluminescente, Besançon, 20e Congrès français de mécanique, 28 août-2 septembre 2011.
↑(en) P. Panaccione, T. Wang, X. Chen, L. SUSAN et G. Q. Lu, « Improved heat dissipation and optical performance of high-power LED packaging with sintered nanosilver die-attach material », Journal of Microelectronics and Electronic packaging, no 7(3), 2010, p. 164-168.
↑(en) Christophe Martinsons, Dina Attia, Francine Behar-Cohen, Samuel Carré, Olivier Enouf, Jack Falcón, Claude Gronfier, David Hicks, Arnaud Metlaine, Leena Tahkamo, Alicia Torriglia et Françoise Viénot, « Correspondence: An appraisal of the effects on human health and the environment of using light-emitting diodes », Lighting Research & Technology, vol. 51, no 8, , p. 1275-1276 (ISSN1477-1535, e-ISSN1477-0938, OCLC8511536037, DOI10.1177/1477153519891878, HALinserm-02455393, lire en ligne [PDF]).
↑(en) Thomas W. Davies, Jonathan Bennie, Richard Inger, Natalie Hempel de Ibarra et Kevin J. Gaston, « Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? », Global Change Biology, vol. 19, no 5, , p. 1417–1423 (lire en ligne).
Pakasam yang sudah digoreng Pekasam[1] (disebut pula bekasam atau pakasam) adalah menu masakan khas dari masyarakat Kalimantan Selatan, Kalimantan Barat dan Sumatera Selatan. Makanan ini adalah produk bahan makanan yang berasal dari fermentasi ikan air tawar yang rasanya masam. Pakasam terutama dikenal di Kalimantan Selatan. Bahan makanan ini biasanya dibumbui lagi dengan cabai dan gula, sebelum disajikan sebagai lauk-pauk. Di beberapa daerah, ada yang menyebutnya pakasam atau iwak sa...
Vestiges of the Natural History of Creation Halaman jurul dari edisi ke-12 Vestiges of the Natural History of Creation (1884)PengarangRobert ChambersNegaraUnited KingdomBahasaEnglishSubjekBiologi evolusionerPenerbitJohn ChurchillTanggal terbitOktober 1844 Vestiges of the Natural History of Creation adalah sebuah karya 1844 dari sejarah alam spekulatif dan filsafat karya Robert Chambers. Karya tersebut diterbitkan secara anonim di Inggris Selama beberapa dekade, terdapat spekulasi tentang...
German cultural region in the State of Missouri Not to be confused with Rhineland, Missouri. Region of Missouri in the United StatesMissouri Rhineland Missouri Rheinland (German)Region of MissouriThe Gasconade Courthouse in Hermann, Missouri Rhineland FlagState of MissouriCountryUnited StatesStateMissouriDemonym(s)Missouri Rhinelanders, (German: Missouri Rheinländer) The Rhineland in the early 1800s The Missouri Rhineland is a German cultural region of Missouri that extends from west of...
Component of disc galaxies comprising gas and stars The Sculptor Galaxy (NGC 253) is an example of a disc galaxy A galactic disc (or galactic disk) is a component of disc galaxies, such as spiral galaxies, lenticular galaxies, and the Milky Way. Galactic discs consist of a stellar component (composed of most of the galaxy's stars) and a gaseous component (mostly composed of cool gas and dust). The stellar population of galactic discs tend to exhibit very little random motion with most of its ...
Pour les articles homonymes, voir Roumanie (homonymie). Roumanie(ro) România Drapeau de la Roumanie Armoiries de la Roumanie Hymne en roumain : Deșteaptă-te, române! (« Éveille-toi, Roumain ! ») Fête nationale 1er décembre · Événement commémoré Création de la Grande Roumanie (1918) La Roumanie en Europe (l'Union européenne en vert clair). Administration Forme de l'État République semi-présidentielle Président Klaus Iohannis Premier minis...
Timeline of the history of Los Angeles, California, United States The following is a general historical timeline of the city of Los Angeles, California in the United States of America. This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources. Pre-Columbian era Part of a series on the History of California Periods Before 1900 Province of Las Californias Alta California California Republic Conquest ...
1 Korintus 5Surat 1 Korintus 7:33-8:4 yang tertulis pada naskah Papirus 15, dibuat sekitar abad ke-3 M.KitabSurat 1 KorintusKategoriSurat-surat PaulusBagian Alkitab KristenPerjanjian BaruUrutan dalamKitab Kristen7← pasal 4 pasal 6 → 1 Korintus 5 (atau I Korintus 5, disingkat 1Kor 5) adalah bagian surat rasul Paulus yang pertama kepada jemaat di Korintus dalam Perjanjian Baru di Alkitab Kristen.[1][2] Dikarang oleh rasul Paulus dan Sostenes[3] di Efesus.[...
The Treasure of the Sierra MadrePoster layar lebarSutradaraJohn HustonProduserHenry BlankeSkenarioJohn HustonBerdasarkanThe Treasure of the Sierra Madreoleh B. TravenPemeranHumphrey BogartWalter HustonTim HoltBruce BennettPenata musikMax SteinerSinematograferTed D. McCordPenyuntingOwen MarksPerusahaanproduksiWarner Bros.-First NationalDistributorWarner Bros.Tanggal rilis 6 Januari 1948 (1948-01-06) Durasi126 menitNegaraAmerika SerikatBahasaInggrisAnggaran$3 juta[1]Pendapata...
Peta Pulau Weno Bandar Udara Internasional Chuuk Weno (Jepang: ウェノ), sebelumnya Moen, adalah sebuah pulau munisipalitas dari Negara Chuuk dari Negara Federasi Mikronesia. Kota ini adalah kota terbesar di Federasi Mikronesia. Geografi Terletak di Chuuk Lagoon. Desa-desanya berada di barat laut (Sapuk, Penia, Peniesene, Tunnuk, Mechitiw, Iras, Nepukos, Mwan, Neiwe, dan Wichap, Epinup) dan berfungsi sebagai pusat utama perdagangan. Weno adalah ibu kota negara bagian dan pulau dengan po...
Questa voce sull'argomento arbitri di calcio norvegesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Tommy Skjerven Informazioni personali Arbitro di Calcio Sezione Kongsvinger Idrettslag Attività nazionale Anni Campionato Ruolo 1996- Tippeligaen Arbitro Attività internazionale 2001-2012 UEFA e FIFA Arbitro Tommy Skjerven (Kaupanger, 25 luglio 1967) è un arbitro di calcio norvegese. Carriera Iniziò la carriera da arbitro nel 1984, diventando un ...
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Escuela Politécnica Federal de Lausana» – noticias · libros · académico · imágenesEste aviso fue puesto el 1 de septiembre de 2020. Escuela Politécnica Federal de Lausana École polytechnique fédérale de Lausanne Sigla EPFLSobrenombre PolyTipo PúblicaForma parte de ETH Domain y Universidad de LausanaFundación 1853LocalizaciónDirección 1015 Lausana (...
Aeropuerto Internacional deEl Salvador Aeropuerto Internacional de El Salvador IATA: SAL OACI: MSLP FAA: SAL LocalizaciónUbicación San Luis Talpa, El SalvadorElevación 31Sirve a San SalvadorDetalles del aeropuertoTipo Civil y MilitarPropietario Gobierno de El SalvadorOperador CEPAConstruido 1976-1979Inaugurado el 31 de enero de 1980Servicios y conexionesHub para Avianca El Salvador Volaris El Salvador Volaris Costa RicaEstadísticas (2023)Volumen de pasajeros 4,500,000Ranking en El Salvado...
Calendar year Millennium: 2nd millennium Centuries: 12th century 13th century 14th century Decades: 1180s 1190s 1200s 1210s 1220s Years: 1201 1202 1203 1204 1205 1206 1207 1204 by topic Leaders Political entities State leaders Religious leaders Birth and death categories Births – Deaths Establishments and disestablishments categories Establishments – Disestablishments Art and literature 1204 in poetry vte 1204 in various calendarsGregorian calendar1204MCCIVAb urbe con...
River in Pennsylvania, United States Juniata RiverThe Appalachian Trail crossing the mouth of the Juniata River. Photo by Carol M. HighsmithJuniata River watershed and tributariesLocationCountryUnited StatesStatePennsylvaniaCountiesDauphin, Perry, Juniata, Mifflin, Huntingdon, Bedford, SomersetCitiesDuncannon, Newport, Millerstown, Thompsontown, Port Royal, Mifflintown, Lewistown, Mount Union, HuntingdonPhysical characteristicsSourceFrankstown Branch • locationBlair Count...
Medical equipment manufacturing company based in Watford, England Smith & Nephew plcCompany typePublic limited companyTraded asLSE: SN.NYSE: SNNFTSE 100 ComponentIndustryMedical equipmentFounded1856; 168 years ago (1856)[1][2][3](Kingston upon Hull)FounderThomas James Smith[1][2][3]HeadquartersWatford, England, UKKey peopleRupert Soames (Chairman) Dr Deepak Nath (CEO)[4]ProductsMedical equipmentRevenue $5,...
Movement of charge carriers with negligible scattering In mesoscopic physics, ballistic conduction (ballistic transport) is the unimpeded flow (or transport) of charge carriers (usually electrons), or energy-carrying particles, over relatively long distances in a material. In general, the resistivity of a material exists because an electron, while moving inside a medium, is scattered by impurities, defects, thermal fluctuations of ions in a crystalline solid, or, generally, by any freely-movi...
Cet article est une ébauche concernant une compétition de football, le football féminin et le Brésil. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Division 1 Généralités Sport Football féminin Création 2013 Organisateur(s) CBF Éditions 5 Périodicité Annuelle Lieu(x) Brésil Participants 16 équipes Statut des participants Professionnel Hiérarchie Hiérarchie 1er niveau Niveau inférieur Sér...
Cet article est une ébauche concernant l’Empire romain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Venta BelgarumGéographiePays Royaume-UniCoordonnées 51° 03′ 47″ N, 1° 19′ 01″ OFonctionnementStatut Cité romaine (d)modifier - modifier le code - modifier Wikidata Venta Belgarum était une ville de la province romaine de Bretagne supérieure, Britannia Super...
Dioxyde de soufre Structure du dioxyde de soufre. Identification Nom UICPA dioxyde de soufre Synonymes oxyde sulfureux,anhydride sulfureux,oxyde de soufre No CAS 7446-09-5 No ECHA 100.028.359 No CE 231-195-2 No RTECS WS4550000 PubChem 1119 ChEBI 18422 No E E220 FEMA 3039 SMILES O=S=O PubChem, vue 3D InChI InChI : vue 3D InChI=1/O2S/c1-3-2 InChIKey : RAHZWNYVWXNFOC-UHFFFAOYAT Std. InChI : vue 3D InChI=1S/O2S/c1-3-2 Std. InChIKey : RAHZWNYVWXNFOC-UHFFFAOYSA-N Appare...