Charles Louis Just Bryon
|
Read other articles:
Combined military forces of South Korea This article is about the South Korean military. For the North Korean military, see Korean People's Army. Republic of Korea Armed Forces대한민국 국군 (Korean)Flag of the Republic of Korea Armed ForcesFounded15 August 1948; 75 years ago (1948-08-15)Service branches Republic of Korea Army Republic of Korea Navy Republic of Korea Marine Corps Republic of Korea Air Force HeadquartersMinistry of National D...
German international shipping company Hapag-Lloyd AGCompany typePublic (AG)Traded asFWB: HLAGISINDE000HLAG475IndustryMarine transportationContainer shippingFoundedSeptember 1, 1970; 53 years ago (September 1, 1970)HeadquartersHamburg, GermanyArea servedWorldwideKey peopleRolf Habben Jansen (CEO)Mark Frese (CFO/CPO)Maximilian Rothkopf (COO)Donya-Florence Amer (CIO & CHRO)Klaus-Michael Kühne (main shareholder, > 30%)[1]ProductsCargo shippingRevenue US$36.40 bil...
Pierre de Polignac Le prince Pierre de Monaco en 1923. Biographie Titulature Comte de Polignac (1895-1920)Duc de Valentinois (1920-1922) Dynastie Maison de Chalencon de Polignac Nom de naissance Pierre Marie Xavier Raphaël Antoine Melchior de Polignac Naissance 24 octobre 1895Hennebont (France) Décès 10 novembre 1964 (à 69 ans)Neuilly-sur-Seine (France) Père Maxence de Polignac Mère Susana de la Torre y Mier Conjoint Charlotte de Monaco (1920-1933) Enfants Antoinette de MonacoRain...
American Christian minister and ecumenical leader Joan Brown CampbellCampbell in 2017Born1931 (age 92–93)Youngstown, OhioOccupation(s)Baptist minister, ecumenical leader, chief executive and directorYears active1970s-2010sKnown forFirst ordained woman to be National Council of Churches president Joan Brown Campbell (born 1931) is an American Christian minister and ecumenical leader. She has standing as an ordained minister in both the Christian Church (Disciples of Christ...
Anti-VenomCosplay di Anti-Venom UniversoUniverso Marvel Lingua orig.Inglese AutoriDan Slott John Romita Jr. EditoreMarvel Comics Editore it.Panini Comics - Marvel Italia 1ª app. it.30 aprile 2009 1ª app. it. inSpider-Man n. 508 Voci orig.Steve Blum (Marvel Super Hero Squad Online, Spider-Man: Edge of Time) Matt Lanter (Ultimate Spider-Man (serie animata)) Caratteristiche immaginarieAlter ego Eddie Brock/ Harry Osborn SessoMaschio Poteri Tutti i poteri di Venom[non tutti so...
В этом китайском имени фамилия (Гуань) стоит перед личным именем. Гуань Юй Дата рождения 160 Место рождения Яньху, округ Хэдун[d], Империя Хань Дата смерти январь 220 Место смерти Линьцзюй, провинция Цзинчжоу Страна Восточная Хань[d] Род деятельности офицер, армей�...
Montenegrin footballer (born 1995) Nemanja Cavnić Cavnić playing for Fremad Amager in 2019Personal informationDate of birth (1995-09-05) 5 September 1995 (age 28)Place of birth Podgorica, FR YugoslaviaHeight 1.92 m (6 ft 4 in)Position(s) Centre-backTeam informationCurrent team ŽeljezničarNumber 4Youth career2012–2014 ZetaSenior career*Years Team Apps (Gls)2014–2018 Zeta 135 (3)2018–2021 Fremad Amager 82 (1)2021–2024 HB Køge 70 (4)2024– Željezničar 12 (0)In...
銮披汶·頌堪แปลก พิบูลสงคราม第3任泰國總理任期1938年12月16日—1944年8月1日君主國王拉玛八世前任披耶帕凤侯爵继任寬·阿派旺第8任泰國總理任期1948年4月8日—1957年9月16日君主國王拉玛九世前任寬·阿派旺继任乃朴·沙拉信 个人资料出生貝·基達桑卡(1897-07-14)1897年7月14日 暹罗暖武里府逝世1964年6月11日(1964歲—06—11)(66歲) 日本神奈川縣相模原市国籍...
Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...
Country in Southeast Asia Not to be confused with Malesia. Malaysiaمليسيا (Jawi) Flag Coat of arms Motto: Bersekutu Bertambah Mutu[1]برسکوتو برتمبه موتو (Jawi)Unity is StrengthAnthem: NegarakuMy CountryShow globeShow map of Southeast AsiaLocation of Malaysia (dark green)– in Asia (dark gray & white)– in ASEAN (dark gray)Capitaland largest cityKuala Lumpur[fn 1]3°8′N 101°41′E...
طقس ياجنا يؤديه أحد المعتقدين به ياجنا أو يجنا أو طقس التقريب[1] (بالإنجليزية: Yajna)، (بالسنسكريتية: यज्ञ) تعني الكلمة حرفيَّا: التضحية، والتفاني، والعبادة والقربان، وهي تشير في الهندوسية إلى أي شعائر تُقام أمام النار المقدسة،[2] وغالبًا، مصحوبة بأساليب التلاوة �...
Economic model for international trade Basic situation: Two otherwise identical countries (A and B) have different initial factor endowments. Autarky equilibrium ( A A , A B {\displaystyle A^{A},A^{B}} ): no trade, individual production equals consumption. Trade equilibrium: both countries consume the same ( C A = C B {\displaystyle C^{A}=C^{B}} ), especially beyond their own Production–possibility frontier; production and consumption points are divergent. The Heckscher–Ohlin model (/hɛk...
Location of Indonesia Indonesia is a unitary sovereign state and transcontinental country located mainly in Southeast Asia with some territories in Oceania. Indonesia's economy is the world's 16th largest by nominal GDP and the 8th largest by GDP at PPP, the largest in Southeast Asia, and is considered an emerging market and newly industrialised country. Indonesia has been a member of the United Nations since 1950. Indonesia was an organizer of the Bandung Conference[1] and was the f...
Jalur kereta api Gurah–KawarasanStasiun GurahIkhtisarJenisLintas cabangSistemJalur kereta api rel ringan Jalur trem uapStatusTidak beroperasiTerminusGurahKawarasanStasiun7OperasiDibangun olehKediri Stoomtram MaatschappijLegalitas pembangunanGovernor besluit 14 Juli 1898 No. 2Governor besluit 5 November 1908 No. 43Dibuka1 Juni 1899Ditutup1947PemilikPT Kereta Api Indonesia (pemilik aset jalur dan stasiun)OperatorWilayah Aset VII MadiunKarakteristik lintasLintas datarData teknisPanjang rel9 km...
مجموعة ماندلبرومعلومات عامةجزء من مجموعة الأعداد المركبة سُمِّي باسم بينوا ماندلبروت اشتق من مجموعة جوليا[1] تعريف الصيغة z n + 1 = z n 2 + c {\displaystyle z_{n+1}=z_{n}^{2}+c} الرموز في الصيغة c {\displaystyle c} ممثلة بـ بعد هاوسدورف تعديل - تعديل مصدري - تعديل ويكي بيانات صورة أصلية لمجموعة ماندلب�...
8°17′33″S 115°19′45″E / 8.292555°S 115.329163°E / -8.292555; 115.329163 Bayung GedeDesaNegara IndonesiaProvinsiBaliKabupatenBangliKecamatanKintamaniKode pos80652Kode Kemendagri51.06.04.2016 Luas10,24 km²Jumlah penduduk1.937 jiwa (2016)[1] 2.568 jiwa (2010)[2]Kepadatan250 jiwa/km² (2010)Jumlah RW1 BanjarJumlah KK-- Bayung Gede adalah desa yang berada di kecamatan Kintamani, Kabupaten Bangli, provinsi Bali, Indonesia.[3] Bayung ...
Peta infrastruktur dan tata guna lahan di Komune Gelvécourt-et-Adompt. = Kawasan perkotaan = Lahan subur = Padang rumput = Lahan pertanaman campuran = Hutan = Vegetasi perdu = Lahan basah = Anak sungaiGelvécourt-et-Adompt merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE Diarsipkan 2007-11-24 di Wayback Machine. lbsKomune di departemen Vosges Les A...
Declaration issued by Ludwig III, King of Bavaria King Ludwig III of Bavaria, who issued the Anif declaration The Anif declaration (‹See Tfd›German: Anifer Erklärung) was issued by Ludwig III, King of Bavaria, on 12 November 1918 at Anif Palace, Austria.[1] It was a declaration in which the monarch relieved all civil servants and military personnel from their oath of loyalty to him. Although he never used the word abdication, the new socialist government of Kurt Eisner deemed it ...
Cet article est une ébauche concernant les sous-marins. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Classe SNLE 3G Vision d'artiste Caractéristiques techniques Type Sous-marin nucléaire lanceur d'engins Longueur env. 150 m Déplacement env. 15000 t Propulsion Chaufferie nucléaire évolution du K15 Caractéristiques militaires Armement 16 MSBS M51.3, torpilles, MDCN Histoire Constructeurs Naval Group A se...
Self-balancing binary search tree data structure Red–black treeTypeTreeInvented1978Invented byLeonidas J. Guibas and Robert SedgewickComplexities in big O notationSpace complexitySpace O ( n ) {\displaystyle O(n)} Time complexityFunction Amortized Worst CaseSearch O ( log n ) {\displaystyle O(\log n)} O ( log n ) {\displaystyle O(\log n)} Insert O ( log n ) {\displaystyle O(\log n)} O ( log n ) {\displaystyle O(\log n)} Delete O ( log n ) {\displ...