H302 : Nocif en cas d'ingestion H315 : Provoque une irritation cutanée H319 : Provoque une sévère irritation des yeux H335 : Peut irriter les voies respiratoires P261 : Éviter de respirer les poussières/fumées/gaz/brouillards/vapeurs/aérosols. P305 : En cas de contact avec les yeux : P338 : Enlever les lentilles de contact si la victime en porte et si elles peuvent être facilement enlevées. Continuer à rincer. P351 : Rincer avec précaution à l’eau pendant plusieurs minutes.
L'acenaphtylène est un hydrocarbure aromatique polycyclique (HAP) constitué d'une molécule de naphtalène dont les carbones 1 et 8 sont reliés par un pont éthylénique. Il se présente sous la forme de poudre cristalline blanche à jaune qui, contrairement à la plupart des hydrocarbures aromatiques polycycliques, n'est pas fluorescente.
C'est un constituant du goudron, et on le trouve aussi dans la houille ainsi qu'en très faible quantité dans le pétrole. La réduction du pont éthylénique donne le composé voisin, l'acénaphtène.
Propriétés physico-chimiques
L'acénaphtylène est presque insoluble dans l'eau, mais est en revanche soluble dans le benzène, l'éther, le chloroforme et dans l'alcool à chaud. L'acénaphtylène a des propriétés mutagènes, toxiques et irritantes.
Utilisation
L'acénaphtylène est essentiellement réduit en acénaphtène qui est nécessaire à la synthèse de l'anhydride naphtalique et à la fabrication de matière plastiques, de colorants, de pigments de couleur, d'insecticides et de produits pharmaceutiques.
La polymérisation de ce composé donne des polymères ayant d'excellentes propriétés thermiques et mécaniques[12]: la polymérisation de l'acénaphtylène avec l'acétylène en présence d'un acide de Lewis donne un polymère conducteur utilisé comme finition anti-statique pour les plastiques, la cocondensation avec le phénol et le formaldéhyde forme des résines résistantes du point de vue chimique et thermique. L'acénaphtylène est un excellent anti-oxydant pour le caoutchouc à base d'éthylène et de propylène.
Production et synthèse
L'acénaphtylène est disponible dans le goudron à une concentration d'environ 2 % et peut être synthétisé par déshydrogénation catalytique de l'acénaphtène[12].
Notes et références
↑(en) Hyp J. Dauben, Jr., James D. Wilson et John L. Laity, « Diamagnetic Susceptibility Exaltation in Hydrocarbons », Journal of the American Chemical Society, vol. 91, no 8, , p. 1991-1998
↑ ab et c(en) W. M Haynes, CRC Handbook of chemistry and physics, Boca Raton, CRC Press/Taylor and Francis, , 91e éd., 2610 p. (ISBN978-143982-077-3), p. 3-4
↑(en) Lizhong Zhu et Shaoliang Feng, « Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants », Chemosphere, vol. 53, no 5, , p. 459-467
↑ ab et cEntrée « Acenaphthylene » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais), accès le 19 janvier 2010 (JavaScript nécessaire)
↑(en) James S. Chickos, Donald G. Hesse, Sarah Hosseini, Joel F. Liebman, David G. Mendenhall, Sergej P. Verevkin, Klaus Rakus, Hans-Dieter Beckhaus et Christoph Rüchardt, « Enthalpies of vaporization of some highly branched hydrocarbons », Journal of Chemical Thermodynamics, vol. 27, no 6, , p. 693-705
↑« Acenaphtylène » dans la base de données de produits chimiques Reptox de la CSST (organisme québécois responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009
↑(en) P. Lee Ferguson, G. Thomas Chandler, Ryan C. Templeton, Amanda DeMarco, Wally A. Scrivens et Benjamin A. Englehart, « Influence of Sediment−Amendment with Single-walled Carbon Nanotubes and Diesel Soot on Bioaccumulation of Hydrophobic Organic Contaminants by Benthic Invertebrates », Environmental Sciences & Technology, vol. 42, no 10, , p. 3879-3885
↑ a et b(en) Karl Griesbaum, Arno Behr, Dieter Biedenkapp, Heinz-Werner Voges, Dorothea Garbe, Christian Paetz, Gerd Collin, Dieter Mayer, Hartmut Höke, Hydrocarbons, Wiley-VCH Verlag GmbH & Co, coll. « Ullmann's Encyclopedia of Industrial Chemistry »,