En matemáticas, un poliedro esférico o teselado esférico, es un enlosado de una esfera en el que la superficie está dividida o seccionada por curvas en regiones delimitadas llamadas polígonos esféricos. Gran parte de la teoría de poliedros simétricos se deduce consistentemente de esta manera.
Algunos poliedros "impropios", como los hosoedros y sus duales (diedros), existen como poliedros esféricos, pero sus análogos de caras planas son elementos degenerados. La pelota de playa hexagonal de la imagen, {2, 6}, es un hosoedro, y el diedro {6, 2} es su poliedro dual.
Historia
Los primeros poliedros artificiales conocidos son los poliedros esféricos labrados en piedra. Se han encontrado muchos en Escocia y parecen datar del período neolítico.
Durante el siglo X, el erudito islámico Abu'l-Wafa escribió el primer estudio riguroso sobre poliedros esféricos.
Los teselados esféricos permiten casos que los poliedros no, a saber, como los hosoedros (con códigos de Schläfli del tipo {2, n}) y los diedros (con códigos de Schläfli del tipo {n, 2}). Generalmente, se utilizan hosoedros regulares y diedros regulares.
Familia de hosoedros regulares · * n22 mutaciones de simetría de teselados de hosoedros regulares: nn